Computational Convergence Analysis of Distributed Optimization Algorithms for Directed Graphs

Shengjun Zhang, Xinlei Yi, Jemin George, Tao Yang
{"title":"Computational Convergence Analysis of Distributed Optimization Algorithms for Directed Graphs","authors":"Shengjun Zhang, Xinlei Yi, Jemin George, Tao Yang","doi":"10.1109/ICCA.2019.8899565","DOIUrl":null,"url":null,"abstract":"In this paper, we present a unified framework based on integral quadratic constraints for analyzing the convergence of distributed push-pull based optimization algorithms for directed graphs. Our framework provides numerical upper bounds on linear convergence rates of existing distributed push-pull based algorithms when local objective functions are strongly convex and smooth and directed graphs are strongly connected. Moreover, we propose a new distributed optimization algorithm for directed graphs and show that the proposed framework can also be applied to establish its linear convergence rate. The theoretical results are illustrated and validated via numerical examples.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a unified framework based on integral quadratic constraints for analyzing the convergence of distributed push-pull based optimization algorithms for directed graphs. Our framework provides numerical upper bounds on linear convergence rates of existing distributed push-pull based algorithms when local objective functions are strongly convex and smooth and directed graphs are strongly connected. Moreover, we propose a new distributed optimization algorithm for directed graphs and show that the proposed framework can also be applied to establish its linear convergence rate. The theoretical results are illustrated and validated via numerical examples.
有向图分布优化算法的计算收敛性分析
本文提出了一个基于积分二次约束的统一框架,用于分析有向图的分布式推拉优化算法的收敛性。我们的框架给出了局部目标函数是强凸的、光滑和有向图是强连通的情况下现有分布式推拉算法线性收敛速率的数值上界。此外,我们还提出了一种新的有向图的分布式优化算法,并证明了该框架也可以用于确定其线性收敛率。通过数值算例对理论结果进行了说明和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信