Mining Relevant Sequence Patterns with CP-Based Framework

Amina Kemmar, W. Ugarte, S. Loudni, Thierry Charnois, Yahia Lebbah, P. Boizumault, B. Crémilleux
{"title":"Mining Relevant Sequence Patterns with CP-Based Framework","authors":"Amina Kemmar, W. Ugarte, S. Loudni, Thierry Charnois, Yahia Lebbah, P. Boizumault, B. Crémilleux","doi":"10.1109/ICTAI.2014.89","DOIUrl":null,"url":null,"abstract":"Sequential pattern mining under various constraints is a challenging data mining task. The paper provides a generic framework based on constraint programming to discover sequence patterns defined by constraints on local patterns (e.g., Gap, regular expressions) or constraints on patterns involving combination of local patterns such as relevant subgroups and top-k patterns. This framework enables the user to mine in a declarative way both kinds of patterns. The solving step is done by exploiting the machinery of Constraint Programming. For complex patterns involving combination of local patterns, we improve the mining step by using dynamic CSP. Finally, we present two case studies in biomedical information extraction and stylistic analysis in linguistics.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Sequential pattern mining under various constraints is a challenging data mining task. The paper provides a generic framework based on constraint programming to discover sequence patterns defined by constraints on local patterns (e.g., Gap, regular expressions) or constraints on patterns involving combination of local patterns such as relevant subgroups and top-k patterns. This framework enables the user to mine in a declarative way both kinds of patterns. The solving step is done by exploiting the machinery of Constraint Programming. For complex patterns involving combination of local patterns, we improve the mining step by using dynamic CSP. Finally, we present two case studies in biomedical information extraction and stylistic analysis in linguistics.
基于cp框架的相关序列模式挖掘
各种约束条件下的顺序模式挖掘是一项具有挑战性的数据挖掘任务。本文提供了一个基于约束规划的通用框架,用于发现由局部模式约束(如Gap、正则表达式)或涉及局部模式组合(如相关子组和top-k模式)的模式约束定义的序列模式。这个框架使用户能够以声明的方式挖掘这两种模式。求解步骤是利用约束规划的机制来完成的。对于涉及局部模式组合的复杂模式,采用动态CSP改进了挖掘步骤。最后,我们介绍了生物医学信息提取和语言学文体学分析的两个案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信