Design space exploration in application-specific hardware synthesis for multiple communicating nested loops

R. Corvino, A. Gamatie, M. Geilen, L. Józwiak
{"title":"Design space exploration in application-specific hardware synthesis for multiple communicating nested loops","authors":"R. Corvino, A. Gamatie, M. Geilen, L. Józwiak","doi":"10.1109/SAMOS.2012.6404166","DOIUrl":null,"url":null,"abstract":"Application specific MPSoCs are often used to implement high-performance data-intensive applications. MPSoC design requires a rapid and efficient exploration of the hardware architecture possibilities to adequately orchestrate the data distribution and architecture of parallel MPSoC computing resources. Behavioral specifications of data-intensive applications are usually given in the form of a loop-based sequential code, which requires parallelization and task scheduling for an efficient MPSoC implementation. Existing approaches in application specific hardware synthesis, use loop transformations to efficiently parallelize single nested loops and use Synchronous Data Flows to statically schedule and balance the data production and consumption of multiple communicating loops. This creates a separation between data and task parallelism analyses, which can reduce the possibilities for throughput optimization in high-performance data-intensive applications. This paper proposes a method for a concurrent exploration of data and task parallelism when using loop transformations to optimize data transfer and storage mechanisms for both single and multiple communicating nested loops. This method provides orchestrated application specific decisions on communication architecture, memory hierarchy and computing resource parallelism. It is computationally efficient and produces high-performance architectures.","PeriodicalId":130275,"journal":{"name":"2012 International Conference on Embedded Computer Systems (SAMOS)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Embedded Computer Systems (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2012.6404166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Application specific MPSoCs are often used to implement high-performance data-intensive applications. MPSoC design requires a rapid and efficient exploration of the hardware architecture possibilities to adequately orchestrate the data distribution and architecture of parallel MPSoC computing resources. Behavioral specifications of data-intensive applications are usually given in the form of a loop-based sequential code, which requires parallelization and task scheduling for an efficient MPSoC implementation. Existing approaches in application specific hardware synthesis, use loop transformations to efficiently parallelize single nested loops and use Synchronous Data Flows to statically schedule and balance the data production and consumption of multiple communicating loops. This creates a separation between data and task parallelism analyses, which can reduce the possibilities for throughput optimization in high-performance data-intensive applications. This paper proposes a method for a concurrent exploration of data and task parallelism when using loop transformations to optimize data transfer and storage mechanisms for both single and multiple communicating nested loops. This method provides orchestrated application specific decisions on communication architecture, memory hierarchy and computing resource parallelism. It is computationally efficient and produces high-performance architectures.
针对多个通信嵌套循环的特定应用硬件综合的设计空间探索
应用专用mpsoc通常用于实现高性能数据密集型应用。MPSoC设计需要快速有效地探索硬件架构的可能性,以充分协调并行MPSoC计算资源的数据分布和架构。数据密集型应用程序的行为规范通常以基于循环的顺序代码的形式给出,这需要并行化和任务调度才能有效地实现MPSoC。现有的特定于应用程序的硬件综合方法,使用循环转换来有效地并行化单个嵌套循环,使用同步数据流来静态调度和平衡多个通信循环的数据生产和消费。这在数据和任务并行性分析之间创建了分离,这可以减少高性能数据密集型应用程序中吞吐量优化的可能性。本文提出了一种使用循环转换来优化单个和多个通信嵌套循环的数据传输和存储机制时并发探索数据和任务并行性的方法。该方法在通信体系结构、内存层次结构和计算资源并行性方面提供了特定于应用程序的编排决策。它具有计算效率并产生高性能架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信