Mining Temporal Dependency among Proactive Data Services and Its Delivery to System-level Anomaly Prediction

Chen Liu, Xiaoqi Li
{"title":"Mining Temporal Dependency among Proactive Data Services and Its Delivery to System-level Anomaly Prediction","authors":"Chen Liu, Xiaoqi Li","doi":"10.1109/ICWS53863.2021.00090","DOIUrl":null,"url":null,"abstract":"Motivated by the requirement of system-level anomaly prediction in the running of industrial processes, this paper proposes a new algorithm to mine temporal dependencies among services, by discovering frequent occurrence patterns among service outputted events. With temporal dependencies, the paper also explores a new type of graph-based service linking approach. These approaches are delivered to prediction of system-level anomalies in some real scenarios.","PeriodicalId":213320,"journal":{"name":"2021 IEEE International Conference on Web Services (ICWS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS53863.2021.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motivated by the requirement of system-level anomaly prediction in the running of industrial processes, this paper proposes a new algorithm to mine temporal dependencies among services, by discovering frequent occurrence patterns among service outputted events. With temporal dependencies, the paper also explores a new type of graph-based service linking approach. These approaches are delivered to prediction of system-level anomalies in some real scenarios.
主动数据服务的时间依赖性挖掘及其在系统级异常预测中的应用
针对工业流程运行过程中系统级异常预测的需求,提出了一种挖掘服务间时间依赖关系的新算法,该算法通过发现服务输出事件之间频繁出现的模式来实现。针对时间依赖关系,本文还探讨了一种新的基于图的服务链接方法。将这些方法应用于实际场景中的系统级异常预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信