Inferring Missing Attributes of Users in Large-Scale Social networks

Huadeng Wang, Songhua Xu, Lihui Liu, Xiaonan Luo
{"title":"Inferring Missing Attributes of Users in Large-Scale Social networks","authors":"Huadeng Wang, Songhua Xu, Lihui Liu, Xiaonan Luo","doi":"10.1109/ICACI.2019.8778611","DOIUrl":null,"url":null,"abstract":"User attribute inference plays an important role in personalized recommendation and precision marketing. However, in large-scale social networks, user attributes are often missing. To address the problem, this paper introduces an inference framework for deriving missing attributes of users in largescale social networks. We use Sina Weibo as our experimental platform. The framework leverages various collaborative filtering methods and a similarity learning scheme to infer missing user attribute values. Experimental results demonstrate the proposed framework is able to generate satisfactory inference results.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

User attribute inference plays an important role in personalized recommendation and precision marketing. However, in large-scale social networks, user attributes are often missing. To address the problem, this paper introduces an inference framework for deriving missing attributes of users in largescale social networks. We use Sina Weibo as our experimental platform. The framework leverages various collaborative filtering methods and a similarity learning scheme to infer missing user attribute values. Experimental results demonstrate the proposed framework is able to generate satisfactory inference results.
大规模社交网络中用户缺失属性的推断
用户属性推理在个性化推荐和精准营销中发挥着重要作用。然而,在大规模的社交网络中,用户属性往往缺失。为了解决这一问题,本文引入了一个推理框架来推导大规模社交网络中用户缺失属性。我们使用新浪微博作为实验平台。该框架利用各种协同过滤方法和相似学习方案来推断缺失的用户属性值。实验结果表明,该框架能够产生令人满意的推理结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信