Low-Complexity Detection of Uplink NOMA by Exploiting Properties of the Propagation Channel

Bashar Tahir, Stefan Schwarz, M. Rupp
{"title":"Low-Complexity Detection of Uplink NOMA by Exploiting Properties of the Propagation Channel","authors":"Bashar Tahir, Stefan Schwarz, M. Rupp","doi":"10.1109/icc40277.2020.9149154","DOIUrl":null,"url":null,"abstract":"Uplink non-orthogonal multiple access (NOMA) has been proposed as an efficient technique to support massive connectivity and reduce access-latency. However, due to the inherent multiuser interference within such a system, iterative joint detection is required, which is of high-complexity. In this paper, we exploit the propagation properties of wireless channels to reduce the detection complexity. In particular, when neighboring spreading-blocks on the time-frequency grid experience similar channel conditions, then it is possible to reuse the calculated filter weights between them. We propose four detection strategies and compare them across a wide range of time- and frequency-selectively. Then, assuming the base station is equipped with a sufficient number of antennas, we replace the MMSE filter with a lower-complexity approximation using Neumann series expansion. The results show that our strategies incur only a small performance loss, while substantially cutting down complexity.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icc40277.2020.9149154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Uplink non-orthogonal multiple access (NOMA) has been proposed as an efficient technique to support massive connectivity and reduce access-latency. However, due to the inherent multiuser interference within such a system, iterative joint detection is required, which is of high-complexity. In this paper, we exploit the propagation properties of wireless channels to reduce the detection complexity. In particular, when neighboring spreading-blocks on the time-frequency grid experience similar channel conditions, then it is possible to reuse the calculated filter weights between them. We propose four detection strategies and compare them across a wide range of time- and frequency-selectively. Then, assuming the base station is equipped with a sufficient number of antennas, we replace the MMSE filter with a lower-complexity approximation using Neumann series expansion. The results show that our strategies incur only a small performance loss, while substantially cutting down complexity.
利用传播信道特性的上行NOMA低复杂度检测
上行链路非正交多址(NOMA)是一种支持海量连接和降低访问延迟的有效技术。但由于该系统存在固有的多用户干扰,需要进行迭代联合检测,复杂度较高。在本文中,我们利用无线信道的传播特性来降低检测复杂度。特别是,当相邻时频网格上的扩展块经历相似的信道条件时,可以在它们之间重用计算出的滤波器权重。我们提出了四种检测策略,并在广泛的时间和频率选择性范围内对它们进行了比较。然后,假设基站配备了足够数量的天线,我们使用诺伊曼级数展开将MMSE滤波器替换为更低复杂度的近似。结果表明,我们的策略只产生很小的性能损失,同时大大降低了复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信