Exploring data leakage in encrypted payload using supervised machine learning

Amir Khaleghi Moghaddam, A. N. Zincir-Heywood
{"title":"Exploring data leakage in encrypted payload using supervised machine learning","authors":"Amir Khaleghi Moghaddam, A. N. Zincir-Heywood","doi":"10.1145/3407023.3409216","DOIUrl":null,"url":null,"abstract":"Data security includes but not limited to, data encryption and key management practices that protect data across all applications and platforms. In this paper, we aim to explore whether any data leakage takes place in data encryption when encrypted data is analyzed using supervised machine learning techniques. To this end, we analyze four encryption algorithms with different key sizes using five supervised learning techniques on two different datasets. The results show that as the encryption algorithms get stronger, the data leakage decreases, even though the data leakage is never zero percent.","PeriodicalId":121225,"journal":{"name":"Proceedings of the 15th International Conference on Availability, Reliability and Security","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3407023.3409216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data security includes but not limited to, data encryption and key management practices that protect data across all applications and platforms. In this paper, we aim to explore whether any data leakage takes place in data encryption when encrypted data is analyzed using supervised machine learning techniques. To this end, we analyze four encryption algorithms with different key sizes using five supervised learning techniques on two different datasets. The results show that as the encryption algorithms get stronger, the data leakage decreases, even though the data leakage is never zero percent.
使用监督机器学习探索加密有效载荷中的数据泄漏
数据安全包括但不限于保护所有应用程序和平台上的数据的数据加密和密钥管理实践。在本文中,我们的目标是探索当使用监督机器学习技术分析加密数据时,数据加密是否会发生数据泄漏。为此,我们在两个不同的数据集上使用五种监督学习技术分析了四种不同密钥大小的加密算法。结果表明,随着加密算法的增强,数据泄漏减少,即使数据泄漏从未为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信