Transfer learning with BERT and a-priori Knowledge-Based Sentence of Interest Selection in Radiology Impressions for Phenotyping Venous Thromboembolism

Arash Maghsoudi, J. Razjouyan, Sara Nowakowski, Ang Li
{"title":"Transfer learning with BERT and a-priori Knowledge-Based Sentence of Interest Selection in Radiology Impressions for Phenotyping Venous Thromboembolism","authors":"Arash Maghsoudi, J. Razjouyan, Sara Nowakowski, Ang Li","doi":"10.1109/cai54212.2023.00122","DOIUrl":null,"url":null,"abstract":"Phenotyping venous thromboembolism (VTE) is a challenging task that requires accurate identification of clinical features from unstructured electronic health records (EHRs). In this study, we propose the use of Bidirectional Encoder Representations from Transformers (BERT), a pre-trained natural language processing (NLP) model, for VTE phenotyping. We fine-tuned BERT on a corpus consisting of radiology impressions of 13702 cancer patients from Harris Health System (HHS) in Houston, Texas. Our evaluation shows that BERT can achieve a sensitivity of 96.1% and precision of 95.1%. Our findings indicate that BERT can be an effective tool for VTE phenotyping using radiology impressions. The proposed approach has potential applications in clinical decision support and population health management.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cai54212.2023.00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phenotyping venous thromboembolism (VTE) is a challenging task that requires accurate identification of clinical features from unstructured electronic health records (EHRs). In this study, we propose the use of Bidirectional Encoder Representations from Transformers (BERT), a pre-trained natural language processing (NLP) model, for VTE phenotyping. We fine-tuned BERT on a corpus consisting of radiology impressions of 13702 cancer patients from Harris Health System (HHS) in Houston, Texas. Our evaluation shows that BERT can achieve a sensitivity of 96.1% and precision of 95.1%. Our findings indicate that BERT can be an effective tool for VTE phenotyping using radiology impressions. The proposed approach has potential applications in clinical decision support and population health management.
基于BERT的迁移学习和基于先验知识的兴趣句子选择在静脉血栓栓塞表型的放射印象中
静脉血栓栓塞(VTE)表型是一项具有挑战性的任务,需要从非结构化电子健康记录(EHRs)中准确识别临床特征。在这项研究中,我们提出使用双向编码器表示从变压器(BERT),一个预训练的自然语言处理(NLP)模型,对VTE表型。我们对来自德克萨斯州休斯顿哈里斯健康系统(HHS)的13702名癌症患者的放射影像组成的语料库进行了微调BERT。我们的评价表明BERT可以达到96.1%的灵敏度和95.1%的精度。我们的研究结果表明,BERT可以是使用放射学印象进行静脉血栓栓塞表型分析的有效工具。该方法在临床决策支持和人群健康管理方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信