Negin Faramarzi, Babar Ali, H. C. Bidsorkhi, A. D’Aloia, A. Tamburrano, M. S. Sarto
{"title":"Graphene-based Smart Insole for Gait Monitoring","authors":"Negin Faramarzi, Babar Ali, H. C. Bidsorkhi, A. D’Aloia, A. Tamburrano, M. S. Sarto","doi":"10.1109/MeMeA57477.2023.10171949","DOIUrl":null,"url":null,"abstract":"The importance of human motion and gait analysis in healthcare cannot be overstated, as it is intricately tied to chronic illnesses. The development of wearable electronics such as smart insole systems has enabled remote and long-term gait monitoring and provides more accurate data. Wearable electronics demand components that possess both flexibility and sensitivity, which are key to their performance. Utilizing low-cost and rapid prototyping techniques, the piezoresistive pressure sensor is developed with spray deposition of graphene nanoplatelets/polycaprolactone composite on the fiber-based commercial insole. The resulting sensor exhibits a pressure range up to 400 kPa and high linear sensitivity (~ 0.376 kPa-1), making it suitable for monitoring human motions. Furthermore, to investigate its practical application in real-time monitoring, the sensor is connected to a low-power programmable data logging and transmitting device for output signal acquisition. The sensor can distinguish different motion states such as walking, jumping, and running while proving its stability potential for long-term use.","PeriodicalId":191927,"journal":{"name":"2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA57477.2023.10171949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The importance of human motion and gait analysis in healthcare cannot be overstated, as it is intricately tied to chronic illnesses. The development of wearable electronics such as smart insole systems has enabled remote and long-term gait monitoring and provides more accurate data. Wearable electronics demand components that possess both flexibility and sensitivity, which are key to their performance. Utilizing low-cost and rapid prototyping techniques, the piezoresistive pressure sensor is developed with spray deposition of graphene nanoplatelets/polycaprolactone composite on the fiber-based commercial insole. The resulting sensor exhibits a pressure range up to 400 kPa and high linear sensitivity (~ 0.376 kPa-1), making it suitable for monitoring human motions. Furthermore, to investigate its practical application in real-time monitoring, the sensor is connected to a low-power programmable data logging and transmitting device for output signal acquisition. The sensor can distinguish different motion states such as walking, jumping, and running while proving its stability potential for long-term use.