Benchmarking spatial joins a la carte

O. Günther, Vincent Oria, P. Picouet, J. Saglio, M. Scholl
{"title":"Benchmarking spatial joins a la carte","authors":"O. Günther, Vincent Oria, P. Picouet, J. Saglio, M. Scholl","doi":"10.1109/SSDM.1998.688109","DOIUrl":null,"url":null,"abstract":"Spatial joins are join operations that involve spatial data types and operators. Spatial access methods are often used to speed up the computation of spatial joins. We address the issue of benchmarking spatial join operations. For this purpose, we first present a WWW-based benchmark generator to produce sets of rectangles. Using a Web browser experimenters can specify the number of rectangles in a sample, as well as the statistical distributions of their sizes, shapes, and locations. Second, using the generator and a well-defined set of statistical models we define several tests to compare the performance of three spatial join algorithms: nested loop, scan-and-index, and synchronized tree traversal. We also added a real-life data set from the Sequoia 2000 storage benchmark. Our results show that the relative performance of the different techniques mainly depends on two parameters: sample size, and selectivity of the join predicate. All of the statistical models and algorithms are available on the Web, which allows for easy verification and modification of our experiments.","PeriodicalId":120937,"journal":{"name":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDM.1998.688109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Spatial joins are join operations that involve spatial data types and operators. Spatial access methods are often used to speed up the computation of spatial joins. We address the issue of benchmarking spatial join operations. For this purpose, we first present a WWW-based benchmark generator to produce sets of rectangles. Using a Web browser experimenters can specify the number of rectangles in a sample, as well as the statistical distributions of their sizes, shapes, and locations. Second, using the generator and a well-defined set of statistical models we define several tests to compare the performance of three spatial join algorithms: nested loop, scan-and-index, and synchronized tree traversal. We also added a real-life data set from the Sequoia 2000 storage benchmark. Our results show that the relative performance of the different techniques mainly depends on two parameters: sample size, and selectivity of the join predicate. All of the statistical models and algorithms are available on the Web, which allows for easy verification and modification of our experiments.
对空间连接进行基准测试
空间连接是涉及空间数据类型和操作符的连接操作。空间访问方法通常用于加快空间连接的计算速度。我们解决了空间连接操作的基准测试问题。为此,我们首先提出了一个基于www的基准生成器来生成矩形集。使用Web浏览器,实验人员可以指定样本中矩形的数量,以及它们的大小、形状和位置的统计分布。其次,使用生成器和一组定义良好的统计模型,我们定义了几个测试来比较三种空间连接算法的性能:嵌套循环、扫描和索引以及同步树遍历。我们还添加了一个来自Sequoia 2000存储基准的真实数据集。我们的结果表明,不同技术的相对性能主要取决于两个参数:样本量和连接谓词的选择性。所有的统计模型和算法都可以在网上获得,这使得我们的实验可以很容易地验证和修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信