{"title":"Hardware-Efficient Deconvolution-Based GAN for Edge Computing","authors":"A. Alhussain, Mingjie Lin","doi":"10.1109/CISS53076.2022.9751185","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GAN) are cutting-edge algorithms for generating new data samples based on the learned data distribution. However, its performance comes at a significant cost in terms of computation and memory requirements. In this paper, we proposed an HW/SW co-design approach for training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow architecture capable of achieving higher throughput versus resource utilization trade-off. The developed accelerator is based on an efficient deconvolution engine that offers high parallelism with respect to scaling factors for GAN-based edge computing. Furthermore, various precisions, datasets, and network scalability were analyzed for low-power inference on resource-constrained platforms. Lastly, an end-to-end open-source framework is provided for training, implementation, state-space exploration, and scaling the inference using Vivado high-level synthesis for Xilinx SoC-FPGAs, and a comparison testbed with Jetson Nano.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Generative Adversarial Networks (GAN) are cutting-edge algorithms for generating new data samples based on the learned data distribution. However, its performance comes at a significant cost in terms of computation and memory requirements. In this paper, we proposed an HW/SW co-design approach for training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow architecture capable of achieving higher throughput versus resource utilization trade-off. The developed accelerator is based on an efficient deconvolution engine that offers high parallelism with respect to scaling factors for GAN-based edge computing. Furthermore, various precisions, datasets, and network scalability were analyzed for low-power inference on resource-constrained platforms. Lastly, an end-to-end open-source framework is provided for training, implementation, state-space exploration, and scaling the inference using Vivado high-level synthesis for Xilinx SoC-FPGAs, and a comparison testbed with Jetson Nano.