An efficient local and global model for image segmentation

Quang Tung Thieu, M. Luong, J. Rocchisani, Dat Tran, E. Viennet
{"title":"An efficient local and global model for image segmentation","authors":"Quang Tung Thieu, M. Luong, J. Rocchisani, Dat Tran, E. Viennet","doi":"10.1109/ATC.2011.6027480","DOIUrl":null,"url":null,"abstract":"In this paper, a new region-based active contour model using a variational level set formulation is proposed for image segmentation. The model is based on curve evolution, local statistical function and level set method. The energy function for the proposed model consists of two components: global component and local component. By introducing the local term, the images with intensity inhomogeneities can be efficiently segmented. Moreover, a smoothness regularization is derived from a Gaussian filtering term. This allows avoiding re-initialization while ensuring the smoothness of the level set function. The addition of the global term makes the model more flexible to the location of initial contour. Experimental results show that our method is less sensitive to the location of initial contour and demonstrate the performance of our model.","PeriodicalId":221905,"journal":{"name":"The 2011 International Conference on Advanced Technologies for Communications (ATC 2011)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Conference on Advanced Technologies for Communications (ATC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2011.6027480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new region-based active contour model using a variational level set formulation is proposed for image segmentation. The model is based on curve evolution, local statistical function and level set method. The energy function for the proposed model consists of two components: global component and local component. By introducing the local term, the images with intensity inhomogeneities can be efficiently segmented. Moreover, a smoothness regularization is derived from a Gaussian filtering term. This allows avoiding re-initialization while ensuring the smoothness of the level set function. The addition of the global term makes the model more flexible to the location of initial contour. Experimental results show that our method is less sensitive to the location of initial contour and demonstrate the performance of our model.
一种高效的局部和全局图像分割模型
本文提出了一种基于变分水平集的区域活动轮廓模型,用于图像分割。该模型基于曲线演化、局部统计函数和水平集方法。该模型的能量函数由全局分量和局部分量两部分组成。通过引入局部项,可以对具有强度不均匀性的图像进行有效分割。此外,从高斯滤波项推导出平滑正则化。这样可以避免重新初始化,同时确保关卡设置功能的平滑性。全局项的加入使模型对初始轮廓的定位更加灵活。实验结果表明,该方法对初始轮廓位置的敏感性较低,证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信