Sentiment analysis of microblog combining dictionary and rules

Ding Yuan, Yanquan Zhou, Ruifan Li, Peng Lu
{"title":"Sentiment analysis of microblog combining dictionary and rules","authors":"Ding Yuan, Yanquan Zhou, Ruifan Li, Peng Lu","doi":"10.1109/ASONAM.2014.6921675","DOIUrl":null,"url":null,"abstract":"Microblog has become a daily communication tool in recent years. Researches on microblog have drawn more and more attention. Microblogging emotional classification is a major research of user intent analysis based on User-Generated Content (UGC). This paper focuses on the discrimination on two emotional tendencies: positive and negative. Firstly, the system cleared the noisy elements in the microblog, then extracted the features of the microblog and finally classified the microblog using Support Vector Machine (SVM). Furthermore, we improve the algorithms of feature extraction and weight computing combining dictionary approach and rule based approach. The result of experiment shows that the method is effective.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Microblog has become a daily communication tool in recent years. Researches on microblog have drawn more and more attention. Microblogging emotional classification is a major research of user intent analysis based on User-Generated Content (UGC). This paper focuses on the discrimination on two emotional tendencies: positive and negative. Firstly, the system cleared the noisy elements in the microblog, then extracted the features of the microblog and finally classified the microblog using Support Vector Machine (SVM). Furthermore, we improve the algorithms of feature extraction and weight computing combining dictionary approach and rule based approach. The result of experiment shows that the method is effective.
结合字典和规则的微博情感分析
近年来,微博已经成为人们日常交流的工具。关于微博的研究越来越受到关注。微博情感分类是基于用户生成内容(UGC)的用户意图分析的一项重要研究。本文着重讨论了积极和消极两种情绪倾向的辨析。该系统首先清除微博中的噪声元素,然后提取微博特征,最后利用支持向量机(SVM)对微博进行分类。在此基础上,结合字典方法和基于规则的方法对特征提取和权重计算算法进行了改进。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信