A Comparison of Techniques for Handling Incomplete Input Data with a Focus on Attribute Relevance Influence

M. Millán-Giraldo, J. S. Sánchez, V. Traver
{"title":"A Comparison of Techniques for Handling Incomplete Input Data with a Focus on Attribute Relevance Influence","authors":"M. Millán-Giraldo, J. S. Sánchez, V. Traver","doi":"10.1109/ICMLA.2010.126","DOIUrl":null,"url":null,"abstract":"This work presents a new approach based on support vector regression to deal with incomplete input (unseen) data and compares it to other existing techniques. The empirical analysis has been done over 18 real data sets and using five different classifiers, with the aim of foreseeing which technique can be deemed as more suitable for each classifier. Also, this study tries to devise how the relevance of the missing attribute affects the performance of each pair (handling algorithm, classifier). Experimental results demonstrate that no technique is absolutely better than the others for all classifiers. However, combining the proposed strategy with the nearest neighbor classifier appears as the best choice to face the problem of missing attribute values in the input data.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work presents a new approach based on support vector regression to deal with incomplete input (unseen) data and compares it to other existing techniques. The empirical analysis has been done over 18 real data sets and using five different classifiers, with the aim of foreseeing which technique can be deemed as more suitable for each classifier. Also, this study tries to devise how the relevance of the missing attribute affects the performance of each pair (handling algorithm, classifier). Experimental results demonstrate that no technique is absolutely better than the others for all classifiers. However, combining the proposed strategy with the nearest neighbor classifier appears as the best choice to face the problem of missing attribute values in the input data.
以属性关联影响为重点的不完全输入数据处理技术比较
这项工作提出了一种基于支持向量回归的新方法来处理不完整的输入(看不见的)数据,并将其与其他现有技术进行了比较。本文对18个真实数据集进行了实证分析,并使用了5种不同的分类器,目的是预测哪种技术更适合每种分类器。此外,本研究试图设计缺失属性的相关性如何影响每对(处理算法,分类器)的性能。实验结果表明,对于所有分类器,没有一种技术绝对优于其他技术。然而,将所提出的策略与最近邻分类器相结合是面对输入数据中属性值缺失问题的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信