Simple empirical software effort estimation model

Wilson Rosa, R. Madachy, B. Boehm, B. Clark
{"title":"Simple empirical software effort estimation model","authors":"Wilson Rosa, R. Madachy, B. Boehm, B. Clark","doi":"10.1145/2652524.2652558","DOIUrl":null,"url":null,"abstract":"Context: An effort estimation model with more than 20 parameters is not very useful at early conceptual phase if you don't have a logical approach for specifying the input values.\n Goal: This paper presents a simple approach for predicting software development effort.\n Method: The regression model uses product size and application types to predict effort. Product size is measured in terms of the equivalent source lines of code. The analysis is based on empirical data collected from 317 very recent projects implemented within the United States Department of Defense over the course of nine years beginning in 2004.\n Result: Statistical results showed that source lines of code and application type are significant contributors to development effort.\n Conclusion: The equation is simpler and more viable to use for early estimates than traditional parametric cost models. The effect of product size on software effort shall be interpreted along with application domain.","PeriodicalId":124452,"journal":{"name":"International Symposium on Empirical Software Engineering and Measurement","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Empirical Software Engineering and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2652524.2652558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Context: An effort estimation model with more than 20 parameters is not very useful at early conceptual phase if you don't have a logical approach for specifying the input values. Goal: This paper presents a simple approach for predicting software development effort. Method: The regression model uses product size and application types to predict effort. Product size is measured in terms of the equivalent source lines of code. The analysis is based on empirical data collected from 317 very recent projects implemented within the United States Department of Defense over the course of nine years beginning in 2004. Result: Statistical results showed that source lines of code and application type are significant contributors to development effort. Conclusion: The equation is simpler and more viable to use for early estimates than traditional parametric cost models. The effect of product size on software effort shall be interpreted along with application domain.
简单的经验软件工作量估算模型
上下文:如果您没有指定输入值的逻辑方法,那么在早期概念阶段,包含超过20个参数的工作量估计模型就不是很有用。目标:本文提出了一种预测软件开发工作的简单方法。方法:回归模型使用产品大小和应用类型来预测工作量。产品大小是根据等效源代码行来衡量的。该分析基于从2004年开始的9年时间里,从美国国防部实施的317个最近项目中收集的经验数据。结果:统计结果显示源代码行和应用程序类型是开发工作的重要贡献者。结论:与传统的参数成本模型相比,该方程更简单,更适用于早期估算。产品大小对软件工作的影响应与应用领域一起解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信