Classification rule mining approach based on multiobjective optimization

T. Sağ, H. Kahramanli
{"title":"Classification rule mining approach based on multiobjective optimization","authors":"T. Sağ, H. Kahramanli","doi":"10.1109/IDAP.2017.8090264","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach for classification rule mining is presented. The remarkable relationship between the rule extraction procedure and the concept of multiobjective optimization is emphasized. The range values of features composing the rules are handled as decision variables in the modelled multiobjective optimization problem. The proposed method is applied to three well-known datasets in literature. These are Iris, Haberman's Survival Data and Pima Indians Diabetes Datasets obtained from machine learning repository of University of California at Irvine (UCI). The classification rules are extracted with 100% accuracy for all datasets. These experimental results are the best outcomes found in literature so far.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a novel approach for classification rule mining is presented. The remarkable relationship between the rule extraction procedure and the concept of multiobjective optimization is emphasized. The range values of features composing the rules are handled as decision variables in the modelled multiobjective optimization problem. The proposed method is applied to three well-known datasets in literature. These are Iris, Haberman's Survival Data and Pima Indians Diabetes Datasets obtained from machine learning repository of University of California at Irvine (UCI). The classification rules are extracted with 100% accuracy for all datasets. These experimental results are the best outcomes found in literature so far.
基于多目标优化的分类规则挖掘方法
本文提出了一种新的分类规则挖掘方法。强调了规则提取过程与多目标优化概念之间的显著关系。在建模的多目标优化问题中,将组成规则的特征的范围值作为决策变量处理。将该方法应用于文献中三个知名的数据集。这些是Iris, Haberman的生存数据和皮马印第安人糖尿病数据集,这些数据集来自加州大学欧文分校(UCI)的机器学习存储库。对所有数据集提取分类规则的准确率为100%。这些实验结果是目前文献中发现的最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信