An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations

A. Resovsky, M. Ramonet, L. Rivier, J. Tarniewicz, P. Ciais, M. Steinbacher, I. Mammarella, M. Mölder, M. Heliasz, D. Kubistin, M. Lindauer, Jennifer Müller-Williams, S. Conil, R. Engelen
{"title":"An algorithm to detect non-background signals in greenhouse gas\ntime series from European tall tower and mountain stations","authors":"A. Resovsky, M. Ramonet, L. Rivier, J. Tarniewicz, P. Ciais, M. Steinbacher, I. Mammarella, M. Mölder, M. Heliasz, D. Kubistin, M. Lindauer, Jennifer Müller-Williams, S. Conil, R. Engelen","doi":"10.5194/AMT-2021-16","DOIUrl":null,"url":null,"abstract":"Abstract. We present a statistical framework for near real-time signal processing to identify regional signals in CO2 time series recorded at stations which are normally uninfluenced by local processes. A curve-fitting function is first applied to the detrended time series to derive a harmonic describing the annual CO2 cycle. We then combine a polynomial fit to the data with a short-term residual filter to estimate the smoothed cycle and define a seasonally-adjusted noise component, equal to two standard deviations of the smoothed cycle about the annual cycle. Spikes in the smoothed daily data which rise above this 2σ threshold are classified as anomalies. Examining patterns of anomalous behavior across multiple sites allows us to quantify the impacts of synoptic-scale weather events and better understand the regional carbon cycling implications of extreme seasonal occurrences such as droughts.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2021-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We present a statistical framework for near real-time signal processing to identify regional signals in CO2 time series recorded at stations which are normally uninfluenced by local processes. A curve-fitting function is first applied to the detrended time series to derive a harmonic describing the annual CO2 cycle. We then combine a polynomial fit to the data with a short-term residual filter to estimate the smoothed cycle and define a seasonally-adjusted noise component, equal to two standard deviations of the smoothed cycle about the annual cycle. Spikes in the smoothed daily data which rise above this 2σ threshold are classified as anomalies. Examining patterns of anomalous behavior across multiple sites allows us to quantify the impacts of synoptic-scale weather events and better understand the regional carbon cycling implications of extreme seasonal occurrences such as droughts.
欧洲高塔站和山地站温室气体时间序列非背景信号检测算法
摘要我们提出了一个近实时信号处理的统计框架,以识别在台站记录的通常不受当地过程影响的CO2时间序列中的区域信号。首先将曲线拟合函数应用于去趋势时间序列,得到描述CO2年循环的调和函数。然后,我们将对数据的多项式拟合与短期残差滤波器相结合,以估计平滑周期,并定义一个季节性调整的噪声分量,等于关于年周期的平滑周期的两个标准差。平滑日数据中超过2σ阈值的峰值被归类为异常。通过对多个地点的异常行为模式的研究,我们可以量化天气尺度天气事件的影响,并更好地理解极端季节性事件(如干旱)对区域碳循环的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信