GMU-WLV at TSAR-2022 Shared Task: Evaluating Lexical Simplification Models

Kai North, Alphaeus Dmonte, Tharindu Ranasinghe, Marcos Zampieri
{"title":"GMU-WLV at TSAR-2022 Shared Task: Evaluating Lexical Simplification Models","authors":"Kai North, Alphaeus Dmonte, Tharindu Ranasinghe, Marcos Zampieri","doi":"10.18653/v1/2022.tsar-1.30","DOIUrl":null,"url":null,"abstract":"This paper describes team GMU-WLV submission to the TSAR shared-task on multilingual lexical simplification. The goal of the task is to automatically provide a set of candidate substitutions for complex words in context. The organizers provided participants with ALEXSIS a manually annotated dataset with instances split between a small trial set with a dozen instances in each of the three languages of the competition (English, Portuguese, Spanish) and a test set with over 300 instances in the three aforementioned languages. To cope with the lack of training data, participants had to either use alternative data sources or pre-trained language models. We experimented with monolingual models: BERTimbau, ELECTRA, and RoBERTA-largeBNE. Our best system achieved 1st place out of sixteen systems for Portuguese, 8th out of thirty-three systems for English, and 6th out of twelve systems for Spanish.","PeriodicalId":247582,"journal":{"name":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.tsar-1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes team GMU-WLV submission to the TSAR shared-task on multilingual lexical simplification. The goal of the task is to automatically provide a set of candidate substitutions for complex words in context. The organizers provided participants with ALEXSIS a manually annotated dataset with instances split between a small trial set with a dozen instances in each of the three languages of the competition (English, Portuguese, Spanish) and a test set with over 300 instances in the three aforementioned languages. To cope with the lack of training data, participants had to either use alternative data sources or pre-trained language models. We experimented with monolingual models: BERTimbau, ELECTRA, and RoBERTA-largeBNE. Our best system achieved 1st place out of sixteen systems for Portuguese, 8th out of thirty-three systems for English, and 6th out of twelve systems for Spanish.
TSAR-2022共享任务:评价词汇简化模型
本文描述了GMU-WLV团队提交给TSAR的多语言词汇简化共享任务。该任务的目标是自动为上下文中的复杂单词提供一组候选替换。组织者为参与者提供了ALEXSIS一个手动注释的数据集,其中的实例分为两个部分:一个小的试验集,其中每一种都有十几个实例,使用竞赛的三种语言(英语、葡萄牙语、西班牙语);一个测试集,其中有超过300个实例,使用上述三种语言。为了解决缺乏训练数据的问题,参与者必须使用替代数据源或预先训练的语言模型。我们用单语模型进行了实验:BERTimbau、ELECTRA和RoBERTA-largeBNE。我们最好的系统在16个葡萄牙语系统中获得了第一名,在33个英语系统中获得了第八名,在12个西班牙语系统中获得了第六名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信