Novel meshes for multivariate interpolation and approximation

T. Lux, L. Watson, Tyler H. Chang, Jon Bernard, Bo Li, Xiaodong Yu, Li Xu, Godmar Back, A. Butt, K. Cameron, D. Yao, Yili Hong
{"title":"Novel meshes for multivariate interpolation and approximation","authors":"T. Lux, L. Watson, Tyler H. Chang, Jon Bernard, Bo Li, Xiaodong Yu, Li Xu, Godmar Back, A. Butt, K. Cameron, D. Yao, Yili Hong","doi":"10.1145/3190645.3190687","DOIUrl":null,"url":null,"abstract":"A rapid increase in the quantity of data available is allowing all fields of science to generate more accurate models of multivariate phenomena. Regression and interpolation become challenging when the dimension of data is large, especially while maintaining tractable computational complexity. This paper proposes three novel techniques for multivariate interpolation and regression that each have polynomial complexity with respect to number of instances (points) and number of attributes (dimension). Initial results suggest that these techniques are capable of effectively modeling multivariate phenomena while maintaining flexibility in different application domains.","PeriodicalId":403177,"journal":{"name":"Proceedings of the ACMSE 2018 Conference","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACMSE 2018 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190645.3190687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A rapid increase in the quantity of data available is allowing all fields of science to generate more accurate models of multivariate phenomena. Regression and interpolation become challenging when the dimension of data is large, especially while maintaining tractable computational complexity. This paper proposes three novel techniques for multivariate interpolation and regression that each have polynomial complexity with respect to number of instances (points) and number of attributes (dimension). Initial results suggest that these techniques are capable of effectively modeling multivariate phenomena while maintaining flexibility in different application domains.
新颖的多元插值和逼近网格
可用数据量的迅速增加使所有科学领域都能够产生更精确的多元现象模型。当数据维数较大时,特别是在保持可处理的计算复杂性的情况下,回归和插值变得具有挑战性。本文提出了三种新的多元插值和回归技术,每种技术在实例数(点)和属性数(维)方面都具有多项式复杂度。初步结果表明,这些技术能够有效地建模多变量现象,同时在不同的应用领域保持灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信