Sparse Bayesian Learning with Atom Refinement for mmWave MIMO Channel Estimation

N. Duong, Q. Nguyen, K. Ngo, Thai-Mai Dinh-Thi
{"title":"Sparse Bayesian Learning with Atom Refinement for mmWave MIMO Channel Estimation","authors":"N. Duong, Q. Nguyen, K. Ngo, Thai-Mai Dinh-Thi","doi":"10.1109/SSP53291.2023.10208044","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel estimation method for the downlink millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel. The proposed method is able to determine the angles, time delays, and gains of the multi-path components by using the spatially sparse nature of mmWave channels. We first use on-grid sparse Bayesian learning (SBL) to coarsely estimate the channel parameters in the beamspace domain. We then develop a refinement method based on Newton–Raphson and Least Square-based atomic tuning to generate a mismatch-free basis. Finally, we finely reconstruct the channel by SBL using the basis found in the previous step. Simulation results show that the proposed channel estimation method outperforms the traditional ones in terms of mean square error and algorithmic complexity.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel estimation method for the downlink millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel. The proposed method is able to determine the angles, time delays, and gains of the multi-path components by using the spatially sparse nature of mmWave channels. We first use on-grid sparse Bayesian learning (SBL) to coarsely estimate the channel parameters in the beamspace domain. We then develop a refinement method based on Newton–Raphson and Least Square-based atomic tuning to generate a mismatch-free basis. Finally, we finely reconstruct the channel by SBL using the basis found in the previous step. Simulation results show that the proposed channel estimation method outperforms the traditional ones in terms of mean square error and algorithmic complexity.
基于原子改进的稀疏贝叶斯学习毫米波MIMO信道估计
本文介绍了一种新的毫米波(mmWave)下行多输入多输出(MIMO)信道估计方法。该方法能够利用毫米波信道的空间稀疏特性确定多径分量的角度、时延和增益。然后,我们开发了一种基于牛顿-拉夫森和基于最小二乘的原子调优的改进方法,以生成无错匹配的基础。最后,我们利用前一步找到的基础,通过SBL精细地重建信道。仿真结果表明,所提出的信道估计方法在均方误差和算法复杂度方面都优于传统的信道估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信