Software quality prediction using random particle swarm optimization (PSO)

Asif Ali, Kavita Choudhary, Ashwini Sharma
{"title":"Software quality prediction using random particle swarm optimization (PSO)","authors":"Asif Ali, Kavita Choudhary, Ashwini Sharma","doi":"10.1109/ICCPCT.2016.7530244","DOIUrl":null,"url":null,"abstract":"In this paper we have considered java based modules as a dataset for software quality prediction. The properties used are class, object, inheritance and dynamic behavior. The data modularity considered for this work is 1-10 and 11-20. First the data is arranged in the group and then it is tested based on chi-square test. Then we have calculated F-measure (FM), Power (PO) and Odd Ratio (OR) and find the parametric quality of software metrics. Then we have applied random particle swarm optimization for testing the optimized value and the obtained results found are improved.","PeriodicalId":431894,"journal":{"name":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2016.7530244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we have considered java based modules as a dataset for software quality prediction. The properties used are class, object, inheritance and dynamic behavior. The data modularity considered for this work is 1-10 and 11-20. First the data is arranged in the group and then it is tested based on chi-square test. Then we have calculated F-measure (FM), Power (PO) and Odd Ratio (OR) and find the parametric quality of software metrics. Then we have applied random particle swarm optimization for testing the optimized value and the obtained results found are improved.
基于随机粒子群算法的软件质量预测
在本文中,我们考虑基于java的模块作为软件质量预测的数据集。使用的属性是类、对象、继承和动态行为。本工作考虑的数据模块化是1-10和11-20。首先将数据分组整理,然后用卡方检验进行检验。然后,我们计算了f度量(FM)、功率(PO)和奇比(OR),并找到了软件度量的参数质量。然后应用随机粒子群算法对优化值进行测试,得到的结果得到了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信