Additive Decompositions in Primitive Extensions

Shaoshi Chen, Hao Du, Ziming Li
{"title":"Additive Decompositions in Primitive Extensions","authors":"Shaoshi Chen, Hao Du, Ziming Li","doi":"10.1145/3208976.3208987","DOIUrl":null,"url":null,"abstract":"This paper extends the classical Hermite-Ostrogradsky reduction for rational functions to more general functions in primitive extensions of certain types. For an element f in such an extension K , the extended reduction decomposes f as the sum of a derivative in K and another element r such that f has an antiderivative in K if and only if r=0; and f has an elementary antiderivative over K if and only if r is a linear combination of logarithmic derivatives over the constants when K is a logarithmic extension. Moreover, r is minimal in some sense. Additive decompositions may lead to reduction-based creative-telescoping methods for nested logarithmic functions, which are not necessarily D -finite.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper extends the classical Hermite-Ostrogradsky reduction for rational functions to more general functions in primitive extensions of certain types. For an element f in such an extension K , the extended reduction decomposes f as the sum of a derivative in K and another element r such that f has an antiderivative in K if and only if r=0; and f has an elementary antiderivative over K if and only if r is a linear combination of logarithmic derivatives over the constants when K is a logarithmic extension. Moreover, r is minimal in some sense. Additive decompositions may lead to reduction-based creative-telescoping methods for nested logarithmic functions, which are not necessarily D -finite.
基元扩展中的加性分解
本文将有理函数的经典Hermite-Ostrogradsky约简推广到某些类型的原始扩展中的更一般的函数。对于扩展K中的元素f,扩展约简将f分解为K中的一个导数与另一个元素r的和,使得当且仅当r=0时f在K中有不定积分;f对K有初等不定积分当且仅当r是对数导数对常数的线性组合当K是对数扩展。而且,r在某种意义上是最小的。对于嵌套的对数函数,可加性分解可能导致基于约简的创造性伸缩方法,这些方法不一定是D有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信