{"title":"Additive Decompositions in Primitive Extensions","authors":"Shaoshi Chen, Hao Du, Ziming Li","doi":"10.1145/3208976.3208987","DOIUrl":null,"url":null,"abstract":"This paper extends the classical Hermite-Ostrogradsky reduction for rational functions to more general functions in primitive extensions of certain types. For an element f in such an extension K , the extended reduction decomposes f as the sum of a derivative in K and another element r such that f has an antiderivative in K if and only if r=0; and f has an elementary antiderivative over K if and only if r is a linear combination of logarithmic derivatives over the constants when K is a logarithmic extension. Moreover, r is minimal in some sense. Additive decompositions may lead to reduction-based creative-telescoping methods for nested logarithmic functions, which are not necessarily D -finite.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper extends the classical Hermite-Ostrogradsky reduction for rational functions to more general functions in primitive extensions of certain types. For an element f in such an extension K , the extended reduction decomposes f as the sum of a derivative in K and another element r such that f has an antiderivative in K if and only if r=0; and f has an elementary antiderivative over K if and only if r is a linear combination of logarithmic derivatives over the constants when K is a logarithmic extension. Moreover, r is minimal in some sense. Additive decompositions may lead to reduction-based creative-telescoping methods for nested logarithmic functions, which are not necessarily D -finite.