Provide a hybrid method to improve the performance of multilevel thresholding for image segmentation using GA and SA algorithms

Afsaneh Alsadat Hosseinzadeh Salavati, S. Mozafari
{"title":"Provide a hybrid method to improve the performance of multilevel thresholding for image segmentation using GA and SA algorithms","authors":"Afsaneh Alsadat Hosseinzadeh Salavati, S. Mozafari","doi":"10.1109/IKT.2015.7288751","DOIUrl":null,"url":null,"abstract":"Multilevel thresholding methods are efficient for image segmentation. In order to determine the thresholds, most methods use histogram of the image. In this paper, a combinational approach based on genetic algorithm (GA) and simulated annealing (SA) is presented which used multilevel thresholding for histogram-based image segmentation. The optimal threshold values are obtained by maximizing Kapur's and Otsu's objective functions. The proposed method combines local search capability of SA with global search process of GA. The proposed technique has been tested on four standard benchmarks. Experimental results showed that the proposed method outperforms other methods in evaluation measures. Also the Kapur based optimization method gives lower standard deviation as compared with Otsu's method.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multilevel thresholding methods are efficient for image segmentation. In order to determine the thresholds, most methods use histogram of the image. In this paper, a combinational approach based on genetic algorithm (GA) and simulated annealing (SA) is presented which used multilevel thresholding for histogram-based image segmentation. The optimal threshold values are obtained by maximizing Kapur's and Otsu's objective functions. The proposed method combines local search capability of SA with global search process of GA. The proposed technique has been tested on four standard benchmarks. Experimental results showed that the proposed method outperforms other methods in evaluation measures. Also the Kapur based optimization method gives lower standard deviation as compared with Otsu's method.
提出了一种混合方法,以提高遗传算法和SA算法在图像分割中的多水平阈值分割的性能
多级阈值分割是一种有效的图像分割方法。为了确定阈值,大多数方法使用图像的直方图。提出了一种基于遗传算法(GA)和模拟退火(SA)的多级阈值分割方法,用于基于直方图的图像分割。通过最大化Kapur和Otsu的目标函数得到最优阈值。该方法将遗传算法的局部搜索能力与遗传算法的全局搜索过程相结合。提出的技术已经在四个标准基准上进行了测试。实验结果表明,该方法在评价指标方面优于其他方法。与Otsu方法相比,Kapur优化方法的标准差更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信