Promotional role for glucocorticoids in the development of intracellular signalling: enhanced cardiac and renal adenylate cyclase reactivity to beta-adrenergic and non-adrenergic stimuli after low-dose fetal dexamethasone exposure.
{"title":"Promotional role for glucocorticoids in the development of intracellular signalling: enhanced cardiac and renal adenylate cyclase reactivity to beta-adrenergic and non-adrenergic stimuli after low-dose fetal dexamethasone exposure.","authors":"X P Bian, F J Seidler, T A Slotkin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal exposure to high doses of glucocorticoids, as used to aid lung maturation in the therapy of Respiratory Distress Syndrome, causes growth retardation and interference with development of beta-adrenergic receptor-mediated cell signalling. The current study examined whether lower levels of steroids might instead play a positive trophic role in receptor transduction. Pregnant rats were given dexamethasone at or below the threshold for growth impairment (0.05-0.2 mg/kg) on gestational days 17, 18 and 19, and the beta-receptor-mediated stimulation of adenylate cyclase was evaluated in membrane preparations from heart and kidney. The enzymatic response to isoproterenol was compared with effects on: (1) basal (unstimulated) adenylate cyclase, (2) adenylate cyclase stimulation mediated by forskolin, which bypasses the beta-receptor, and (3) development of beta-receptor binding capabilities, assessed with [125I]pindolol. In the heart, prenatal exposure to dexamethasone produced a dose-dependent enhancement of beta-receptor-mediated stimulation of adenylate cyclase activity; however, both basal and forskolin-stimulated activity were also increased and beta-receptor binding was relatively unaffected. These results suggest that enhanced responsiveness was occurring at the level of the cyclase itself, rather than by effects on receptors on their G-protein coupling to enzyme activity. Promotional effects on adenylate cyclase were detectable at the low dose of dexamethasone, without any evidence of growth impairment.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":15572,"journal":{"name":"Journal of developmental physiology","volume":"17 6","pages":"289-97"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of developmental physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fetal exposure to high doses of glucocorticoids, as used to aid lung maturation in the therapy of Respiratory Distress Syndrome, causes growth retardation and interference with development of beta-adrenergic receptor-mediated cell signalling. The current study examined whether lower levels of steroids might instead play a positive trophic role in receptor transduction. Pregnant rats were given dexamethasone at or below the threshold for growth impairment (0.05-0.2 mg/kg) on gestational days 17, 18 and 19, and the beta-receptor-mediated stimulation of adenylate cyclase was evaluated in membrane preparations from heart and kidney. The enzymatic response to isoproterenol was compared with effects on: (1) basal (unstimulated) adenylate cyclase, (2) adenylate cyclase stimulation mediated by forskolin, which bypasses the beta-receptor, and (3) development of beta-receptor binding capabilities, assessed with [125I]pindolol. In the heart, prenatal exposure to dexamethasone produced a dose-dependent enhancement of beta-receptor-mediated stimulation of adenylate cyclase activity; however, both basal and forskolin-stimulated activity were also increased and beta-receptor binding was relatively unaffected. These results suggest that enhanced responsiveness was occurring at the level of the cyclase itself, rather than by effects on receptors on their G-protein coupling to enzyme activity. Promotional effects on adenylate cyclase were detectable at the low dose of dexamethasone, without any evidence of growth impairment.(ABSTRACT TRUNCATED AT 250 WORDS)