A Divide-and-Conquer Clustering Approach Based on Optimum-Path Forest

Adan Echemendia Montero, A. Falcão
{"title":"A Divide-and-Conquer Clustering Approach Based on Optimum-Path Forest","authors":"Adan Echemendia Montero, A. Falcão","doi":"10.1109/SIBGRAPI.2018.00060","DOIUrl":null,"url":null,"abstract":"Data clustering is one of the main challenges when solving Data Science problems. Despite its progress over almost one century of research, clustering algorithms still fail in identifying groups naturally related to the semantics of the problem. Moreover, the technological advances add crucial challenges with a considerable data increase, which are not handled by most techniques. We address these issues by proposing a divide-and-conquer approach to a clustering technique, which is unique in finding one group per dome of the probability density function of the data — the Optimum-Path Forest (OPF) clustering algorithm. Our approach can use all samples, or at least many samples, in the unsupervised learning process without affecting the grouping performance and, therefore, being less likely to lose relevant grouping information. We show that it can obtain satisfactory results when segmenting natural images into superpixels.","PeriodicalId":208985,"journal":{"name":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2018.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Data clustering is one of the main challenges when solving Data Science problems. Despite its progress over almost one century of research, clustering algorithms still fail in identifying groups naturally related to the semantics of the problem. Moreover, the technological advances add crucial challenges with a considerable data increase, which are not handled by most techniques. We address these issues by proposing a divide-and-conquer approach to a clustering technique, which is unique in finding one group per dome of the probability density function of the data — the Optimum-Path Forest (OPF) clustering algorithm. Our approach can use all samples, or at least many samples, in the unsupervised learning process without affecting the grouping performance and, therefore, being less likely to lose relevant grouping information. We show that it can obtain satisfactory results when segmenting natural images into superpixels.
基于最优路径森林的分而治之聚类方法
数据聚类是解决数据科学问题的主要挑战之一。尽管在近一个世纪的研究中取得了进展,聚类算法在识别与问题语义自然相关的组方面仍然失败。此外,技术进步带来了大量数据的增加,这是大多数技术无法解决的关键挑战。我们通过提出一种分而治之的聚类技术方法来解决这些问题,该方法的独特之处在于在数据的概率密度函数的每个圆中找到一组-最优路径森林(OPF)聚类算法。我们的方法可以在无监督学习过程中使用所有样本,或者至少是许多样本,而不会影响分组性能,因此,不太可能丢失相关的分组信息。实验结果表明,该方法在对自然图像进行超像素分割时可以获得满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信