Particle swarm optimization based spectral transformation for radioactive material detection and classification

Wei Wei, Q. Du, N. Younan
{"title":"Particle swarm optimization based spectral transformation for radioactive material detection and classification","authors":"Wei Wei, Q. Du, N. Younan","doi":"10.1109/CIMSA.2010.5611753","DOIUrl":null,"url":null,"abstract":"We investigate buried depleted uranium detection and classification using data collected with short sensor dwell time (i.e., less than or equal to 1s). Under this circumstance, the gamma spectroscope collected by a NaI detector can be sparse and random, and may be severely affected by energy counts from the background. Several spectral transformations using binned energy windows can help alleviate the negative effect from background spectral noisy variation. The simplest way for such spectral partition is to use a fixed bin-width for uniform partition. In this paper, we propose a particle swarm optimization (PSO)-based optimization method to automatically determine the varied bin-width for each energy window. The experimental result shows that the spectral transformation methods using PSO-selected bins with variable widths can outperform those with a fixed bin-width.","PeriodicalId":162890,"journal":{"name":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2010.5611753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We investigate buried depleted uranium detection and classification using data collected with short sensor dwell time (i.e., less than or equal to 1s). Under this circumstance, the gamma spectroscope collected by a NaI detector can be sparse and random, and may be severely affected by energy counts from the background. Several spectral transformations using binned energy windows can help alleviate the negative effect from background spectral noisy variation. The simplest way for such spectral partition is to use a fixed bin-width for uniform partition. In this paper, we propose a particle swarm optimization (PSO)-based optimization method to automatically determine the varied bin-width for each energy window. The experimental result shows that the spectral transformation methods using PSO-selected bins with variable widths can outperform those with a fixed bin-width.
基于粒子群优化的光谱变换在放射性物质检测与分类中的应用
我们利用短传感器停留时间(即小于或等于15秒)收集的数据研究埋藏贫化铀的探测和分类。在这种情况下,NaI探测器采集的伽马能谱可能是稀疏和随机的,并且可能受到来自背景的能量计数的严重影响。利用分形能量窗进行光谱变换,可以减轻背景光谱噪声变化带来的负面影响。这种谱划分最简单的方法是使用固定的桶宽进行均匀划分。本文提出了一种基于粒子群优化(PSO)的优化方法来自动确定每个能量窗口的变化桶宽度。实验结果表明,使用pso选择的变宽度桶的光谱变换方法优于固定宽度桶的光谱变换方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信