Unsupervised deep hashing for large-scale visual search

Zhaoqiang Xia, Xiaoyi Feng, Jinye Peng, A. Hadid
{"title":"Unsupervised deep hashing for large-scale visual search","authors":"Zhaoqiang Xia, Xiaoyi Feng, Jinye Peng, A. Hadid","doi":"10.1109/IPTA.2016.7821007","DOIUrl":null,"url":null,"abstract":"Learning based hashing plays a pivotal role in large-scale visual search. However, most existing hashing algorithms tend to learn shallow models that do not seek representative binary codes. In this paper, we propose a novel hashing approach based on unsupervised deep learning to hierarchically transform features into hash codes. Within the heterogeneous deep hashing framework, the autoencoder layers with specific constraints are considered to model the nonlinear mapping between features and binary codes. Then, a Restricted Boltzmann Machine (RBM) layer with constraints is utilized to reduce the dimension in the hamming space. The experiments on the problem of visual search demonstrate the competitiveness of our proposed approach compared to the state of the art.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Learning based hashing plays a pivotal role in large-scale visual search. However, most existing hashing algorithms tend to learn shallow models that do not seek representative binary codes. In this paper, we propose a novel hashing approach based on unsupervised deep learning to hierarchically transform features into hash codes. Within the heterogeneous deep hashing framework, the autoencoder layers with specific constraints are considered to model the nonlinear mapping between features and binary codes. Then, a Restricted Boltzmann Machine (RBM) layer with constraints is utilized to reduce the dimension in the hamming space. The experiments on the problem of visual search demonstrate the competitiveness of our proposed approach compared to the state of the art.
大规模视觉搜索的无监督深度哈希
基于学习的哈希算法在大规模视觉搜索中起着关键作用。然而,大多数现有的哈希算法倾向于学习不寻找代表性二进制码的浅模型。在本文中,我们提出了一种基于无监督深度学习的新型哈希方法,将特征分层转换为哈希码。在异构深度哈希框架中,考虑了具有特定约束的自编码器层来建模特征和二进制码之间的非线性映射。然后,利用带约束的受限玻尔兹曼机(RBM)层对汉明空间进行降维;在视觉搜索问题上的实验表明,与目前的技术相比,我们提出的方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信