{"title":"Feasibility Study of In-Field Phenotypic Trait Extraction for Robotic Soft-Fruit Operations","authors":"Raymond Kirk, M. Mangan, Grzegorz Cielniak","doi":"10.31256/uk4td6i","DOIUrl":null,"url":null,"abstract":"There are many agricultural applications that would benefit from robotic monitoring of soft-fruit, examples include harvesting and yield forecasting. Autonomous mobile robotic platforms enable digitisation of horticultural processes in-field reducing labour demand and increasing efficiency through con- tinuous operation. It is critical for vision-based fruit detection methods to estimate traits such as size, mass and volume for quality assessment, maturity estimation and yield forecasting. Estimating these traits from a camera mounted on a mobile robot is a non-destructive/invasive approach to gathering qualitative fruit data in-field. We investigate the feasibility of using vision- based modalities for precise, cheap, and real time computation of phenotypic traits: mass and volume of strawberries from planar RGB slices and optionally point data. Our best method achieves a marginal error of 3.00cm3 for volume estimation. The planar RGB slices can be computed manually or by using common object detection methods such as Mask R-CNN.","PeriodicalId":393014,"journal":{"name":"UKRAS20 Conference: \"Robots into the real world\" Proceedings","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UKRAS20 Conference: \"Robots into the real world\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/uk4td6i","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
There are many agricultural applications that would benefit from robotic monitoring of soft-fruit, examples include harvesting and yield forecasting. Autonomous mobile robotic platforms enable digitisation of horticultural processes in-field reducing labour demand and increasing efficiency through con- tinuous operation. It is critical for vision-based fruit detection methods to estimate traits such as size, mass and volume for quality assessment, maturity estimation and yield forecasting. Estimating these traits from a camera mounted on a mobile robot is a non-destructive/invasive approach to gathering qualitative fruit data in-field. We investigate the feasibility of using vision- based modalities for precise, cheap, and real time computation of phenotypic traits: mass and volume of strawberries from planar RGB slices and optionally point data. Our best method achieves a marginal error of 3.00cm3 for volume estimation. The planar RGB slices can be computed manually or by using common object detection methods such as Mask R-CNN.