Feasibility Study of In-Field Phenotypic Trait Extraction for Robotic Soft-Fruit Operations

Raymond Kirk, M. Mangan, Grzegorz Cielniak
{"title":"Feasibility Study of In-Field Phenotypic Trait Extraction for Robotic Soft-Fruit Operations","authors":"Raymond Kirk, M. Mangan, Grzegorz Cielniak","doi":"10.31256/uk4td6i","DOIUrl":null,"url":null,"abstract":"There are many agricultural applications that would benefit from robotic monitoring of soft-fruit, examples include harvesting and yield forecasting. Autonomous mobile robotic platforms enable digitisation of horticultural processes in-field reducing labour demand and increasing efficiency through con- tinuous operation. It is critical for vision-based fruit detection methods to estimate traits such as size, mass and volume for quality assessment, maturity estimation and yield forecasting. Estimating these traits from a camera mounted on a mobile robot is a non-destructive/invasive approach to gathering qualitative fruit data in-field. We investigate the feasibility of using vision- based modalities for precise, cheap, and real time computation of phenotypic traits: mass and volume of strawberries from planar RGB slices and optionally point data. Our best method achieves a marginal error of 3.00cm3 for volume estimation. The planar RGB slices can be computed manually or by using common object detection methods such as Mask R-CNN.","PeriodicalId":393014,"journal":{"name":"UKRAS20 Conference: \"Robots into the real world\" Proceedings","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UKRAS20 Conference: \"Robots into the real world\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/uk4td6i","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There are many agricultural applications that would benefit from robotic monitoring of soft-fruit, examples include harvesting and yield forecasting. Autonomous mobile robotic platforms enable digitisation of horticultural processes in-field reducing labour demand and increasing efficiency through con- tinuous operation. It is critical for vision-based fruit detection methods to estimate traits such as size, mass and volume for quality assessment, maturity estimation and yield forecasting. Estimating these traits from a camera mounted on a mobile robot is a non-destructive/invasive approach to gathering qualitative fruit data in-field. We investigate the feasibility of using vision- based modalities for precise, cheap, and real time computation of phenotypic traits: mass and volume of strawberries from planar RGB slices and optionally point data. Our best method achieves a marginal error of 3.00cm3 for volume estimation. The planar RGB slices can be computed manually or by using common object detection methods such as Mask R-CNN.
软果机器人田间表型性状提取的可行性研究
有许多农业应用将受益于软果的机器人监测,例如收获和产量预测。自主移动机器人平台使现场园艺过程数字化,减少了劳动力需求,并通过连续操作提高了效率。果实的大小、质量、体积等性状的估计是基于视觉的果实检测方法进行品质评价、成熟度估计和产量预测的关键。通过安装在移动机器人上的相机来估计这些性状是一种非破坏性/侵入性的方法,可以在田间收集定性的水果数据。我们研究了使用基于视觉的模式进行精确、廉价和实时的表型性状计算的可行性:从平面RGB切片和可选的点数据中计算草莓的质量和体积。我们的最佳方法对体积估计的边际误差为3.00cm3。平面RGB切片可以手动计算,也可以使用普通的对象检测方法,如Mask R-CNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信