Preprocessing and Framework for Unsupervised Anomaly Detection in IoT: Work on Progress

Kurniabudi, Benni Purnama, Sharipuddin, D. Stiawan, Darmawijoyo, R. Budiarto
{"title":"Preprocessing and Framework for Unsupervised Anomaly Detection in IoT: Work on Progress","authors":"Kurniabudi, Benni Purnama, Sharipuddin, D. Stiawan, Darmawijoyo, R. Budiarto","doi":"10.1109/ICECOS.2018.8605231","DOIUrl":null,"url":null,"abstract":"A robust increasing on smart sensors in Internet of Thing (IoT) results huge and heterogenous data and becomes a challenge in data prepocessing and analysis for anomaly detection. The lack of IoT publicly available dataset is one issue in anomaly detection research. To resolve that problem, a testbed topology is proposed in this research. In addition, a high-dimensionality data analysis faces a computational complexity. The purpose of this study is to presents a global framework for anomaly detection in IoT and proposes a distributed preprocessing framework. Unsupervised learning approach has been chosen to reduce dimensionality of IoT data traffic.","PeriodicalId":149318,"journal":{"name":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2018.8605231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A robust increasing on smart sensors in Internet of Thing (IoT) results huge and heterogenous data and becomes a challenge in data prepocessing and analysis for anomaly detection. The lack of IoT publicly available dataset is one issue in anomaly detection research. To resolve that problem, a testbed topology is proposed in this research. In addition, a high-dimensionality data analysis faces a computational complexity. The purpose of this study is to presents a global framework for anomaly detection in IoT and proposes a distributed preprocessing framework. Unsupervised learning approach has been chosen to reduce dimensionality of IoT data traffic.
物联网中无监督异常检测的预处理和框架:进展中的工作
随着物联网智能传感器的迅猛发展,数据量庞大且异构,对异常检测的数据处理和分析提出了挑战。缺乏公开可用的物联网数据集是异常检测研究中的一个问题。为了解决这一问题,本研究提出了一种试验台拓扑结构。此外,高维数据分析还面临着计算复杂度的问题。本研究的目的是提出一个物联网异常检测的全球框架,并提出一个分布式预处理框架。选择无监督学习方法来降低物联网数据流量的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信