Evaluation of an Integer Optimized Shape Matching Algorithm

Gernot Fiala, Johannes Loinig, C. Steger
{"title":"Evaluation of an Integer Optimized Shape Matching Algorithm","authors":"Gernot Fiala, Johannes Loinig, C. Steger","doi":"10.1109/SAS51076.2021.9530015","DOIUrl":null,"url":null,"abstract":"Computer vision and machine learning algorithms are often used for quality control for industrial products. Nowadays, neural networks can perform very well to detect the desired objects. Sometimes, the system has limited resources and is not capable of processing complex algorithms or use neural networks. Here, simpler algorithms are used for shape or object detection. The scope of the present work is to even lower the complexity of the shape matching algorithm by converting a shape detection algorithm to an integer version and evaluate the results. This allows to remove floating-point units (FPU) of processors and reduce the area of a System-on-Chip (SoC) design of a smart image sensor.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computer vision and machine learning algorithms are often used for quality control for industrial products. Nowadays, neural networks can perform very well to detect the desired objects. Sometimes, the system has limited resources and is not capable of processing complex algorithms or use neural networks. Here, simpler algorithms are used for shape or object detection. The scope of the present work is to even lower the complexity of the shape matching algorithm by converting a shape detection algorithm to an integer version and evaluate the results. This allows to remove floating-point units (FPU) of processors and reduce the area of a System-on-Chip (SoC) design of a smart image sensor.
一种整数优化形状匹配算法的评估
计算机视觉和机器学习算法经常用于工业产品的质量控制。目前,神经网络可以很好地检测目标。有时,系统资源有限,无法处理复杂的算法或使用神经网络。这里,更简单的算法用于形状或物体检测。本工作的范围是通过将形状检测算法转换为整数版本并评估结果来降低形状匹配算法的复杂性。这允许移除处理器的浮点单元(FPU),并减少智能图像传感器的片上系统(SoC)设计的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信