{"title":"Lowering the T-depth of Quantum Circuits via Logic Network Optimization","authors":"Thomas Häner, Mathias Soeken","doi":"10.1145/3501334","DOIUrl":null,"url":null,"abstract":"The multiplicative depth of a logic network over the gate basis {∧ , ⊕ , ¬} is the largest number of ∧ gates on any path from a primary input to a primary output in the network. We describe a dynamic programming based logic synthesis algorithm to reduce the multiplicative depth of logic networks. It makes use of cut enumeration, tree balancing, and exclusive sum-of-products (ESOP) representations. Our algorithm has applications to cryptography and quantum computing, as a reduction in the multiplicative depth directly translates to a lower T-depth of the corresponding quantum circuit. Our experimental results show improvements in T-depth over state-of-the-art methods and over several hand-optimized quantum circuits, for instance, of AES, SHA, and floating-point arithmetic.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The multiplicative depth of a logic network over the gate basis {∧ , ⊕ , ¬} is the largest number of ∧ gates on any path from a primary input to a primary output in the network. We describe a dynamic programming based logic synthesis algorithm to reduce the multiplicative depth of logic networks. It makes use of cut enumeration, tree balancing, and exclusive sum-of-products (ESOP) representations. Our algorithm has applications to cryptography and quantum computing, as a reduction in the multiplicative depth directly translates to a lower T-depth of the corresponding quantum circuit. Our experimental results show improvements in T-depth over state-of-the-art methods and over several hand-optimized quantum circuits, for instance, of AES, SHA, and floating-point arithmetic.