Rnn-transducer With Language Bias For End-to-end Mandarin-English Code-switching Speech Recognition

Shuai Zhang, Jiangyan Yi, Zhengkun Tian, J. Tao, Ye Bai
{"title":"Rnn-transducer With Language Bias For End-to-end Mandarin-English Code-switching Speech Recognition","authors":"Shuai Zhang, Jiangyan Yi, Zhengkun Tian, J. Tao, Ye Bai","doi":"10.1109/ISCSLP49672.2021.9362075","DOIUrl":null,"url":null,"abstract":"Recently, language identity information has been utilized to improve the performance of end-to-end code-switching (CS) speech recognition task. However, previous work use an additional language identification (LID) model as an auxiliary module, which increases computation cost. In this work, we propose an improved recurrent neural network transducer (RNN-T) model with language bias to alleviate the problem. We use the language identities to bias the model to predict the CS points. This promotes the model to learn the language identity information directly from transcriptions, and no additional LID model is needed. We evaluate the approach on a Mandarin-English CS corpus SEAME. Compared to our RNN-T baseline, the RNN-T with language bias can achieve 16.2% and 12.9% relative mixed error reduction on two test sets, respectively.","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Recently, language identity information has been utilized to improve the performance of end-to-end code-switching (CS) speech recognition task. However, previous work use an additional language identification (LID) model as an auxiliary module, which increases computation cost. In this work, we propose an improved recurrent neural network transducer (RNN-T) model with language bias to alleviate the problem. We use the language identities to bias the model to predict the CS points. This promotes the model to learn the language identity information directly from transcriptions, and no additional LID model is needed. We evaluate the approach on a Mandarin-English CS corpus SEAME. Compared to our RNN-T baseline, the RNN-T with language bias can achieve 16.2% and 12.9% relative mixed error reduction on two test sets, respectively.
基于语言偏差的rnn换能器端到端中英文码转换语音识别
近年来,语言身份信息被用于提高端到端代码交换语音识别任务的性能。然而,以往的工作使用额外的语言识别(LID)模型作为辅助模块,这增加了计算成本。在这项工作中,我们提出了一种改进的递归神经网络换能器(RNN-T)模型来缓解语言偏差问题。我们使用语言身份对模型进行偏差来预测CS点。这促进了模型直接从转录中学习语言标识信息,而不需要额外的LID模型。我们在汉语-英语CS语料库SEAME上对该方法进行了评估。与我们的RNN-T基线相比,带有语言偏差的RNN-T在两个测试集上分别可以实现16.2%和12.9%的相对混合误差降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信