GlobalSearchRegression.jl: \ Building bridges between Machine Learning and Econometrics in Fat-Data scenarios

D. Panigo, P. Gluzmann, E. Mocskos, Adan Mauri Ungaro, Valentin Mari, Nicolás Monzón
{"title":"GlobalSearchRegression.jl: \\ Building bridges between Machine Learning and Econometrics in Fat-Data scenarios","authors":"D. Panigo, P. Gluzmann, E. Mocskos, Adan Mauri Ungaro, Valentin Mari, Nicolás Monzón","doi":"10.21105/jcon.00053","DOIUrl":null,"url":null,"abstract":"The aim of this paper is twofold. The first one is to describe a novel research-project designed for building bridges between machine learning and econometric worlds ( ModelSelection.jl). The second one is to introduce the main characteristics and comparative performance of the first Julia-native all-subset regression algorithm included in GlobalSearchRegression.jl (v1.0.5). As other available alternatives, this algorithm allows researchers to obtain the best model specification among all possible covariate combinations - in terms of user defined information criteria-, but up to 3165 and 197 times faster than STATA and R alternatives, respectively.","PeriodicalId":443465,"journal":{"name":"JuliaCon Proceedings","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JuliaCon Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/jcon.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is twofold. The first one is to describe a novel research-project designed for building bridges between machine learning and econometric worlds ( ModelSelection.jl). The second one is to introduce the main characteristics and comparative performance of the first Julia-native all-subset regression algorithm included in GlobalSearchRegression.jl (v1.0.5). As other available alternatives, this algorithm allows researchers to obtain the best model specification among all possible covariate combinations - in terms of user defined information criteria-, but up to 3165 and 197 times faster than STATA and R alternatives, respectively.
GlobalSearchRegression。[j]:在脂肪数据场景中建立机器学习和计量经济学之间的桥梁
本文的目的是双重的。第一个是描述一个新颖的研究项目,旨在在机器学习和计量经济学世界之间建立桥梁(ModelSelection.jl)。第二部分介绍了GlobalSearchRegression中包含的第一种Julia-native全子集回归算法的主要特征和比较性能。杰(v1.0.5)。与其他可用的替代方法一样,该算法允许研究人员在所有可能的协变量组合中获得最佳模型规范——就用户定义的信息标准而言——但比STATA和R替代方法分别快3165倍和197倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信