{"title":"Hierarchical Dataflow Model for efficient programming of clustered manycore processors","authors":"J. Hascoet, K. Desnos, J. Nezan, B. Dinechin","doi":"10.1109/ASAP.2017.7995270","DOIUrl":null,"url":null,"abstract":"Programming Multiprocessor Systems-on-Chips (MPSoCs) with hundreds of heterogeneous Processing Elements (PEs), complex memory architectures, and Networks-on-Chips (NoCs) remains a challenge for embedded system designers. Dataflow Models of Computation (MoCs) are increasingly used for developing parallel applications as their high-level of abstraction eases the automation of mapping, task scheduling and memory allocation onto MPSoCs. This paper introduces a technique for deploying hierarchical dataflow graphs efficiently onto MPSoC. The proposed technique exploits different granularity of dataflow parallelism to generate both NoC-based communications and nested OpenMP loops. Deployment of an image processing application on a many-core MPSoC results in speedups of up to 58.7 compared to the sequential execution.","PeriodicalId":405953,"journal":{"name":"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2017.7995270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Programming Multiprocessor Systems-on-Chips (MPSoCs) with hundreds of heterogeneous Processing Elements (PEs), complex memory architectures, and Networks-on-Chips (NoCs) remains a challenge for embedded system designers. Dataflow Models of Computation (MoCs) are increasingly used for developing parallel applications as their high-level of abstraction eases the automation of mapping, task scheduling and memory allocation onto MPSoCs. This paper introduces a technique for deploying hierarchical dataflow graphs efficiently onto MPSoC. The proposed technique exploits different granularity of dataflow parallelism to generate both NoC-based communications and nested OpenMP loops. Deployment of an image processing application on a many-core MPSoC results in speedups of up to 58.7 compared to the sequential execution.