RFTC

Darshana Jayasinghe, A. Ignjatović, S. Parameswaran
{"title":"RFTC","authors":"Darshana Jayasinghe, A. Ignjatović, S. Parameswaran","doi":"10.1145/3316781.3317899","DOIUrl":null,"url":null,"abstract":"Random execution time-based countermeasures against power analysis attacks have reduced resource overheads when compared to balancing power dissipation and masking counter-measures. The previous countermeasures on randomization use either a small number of clock frequencies or delays to randomize the execution. This paper presents a novel random frequency countermeasure (referred to as RFTC) using the dynamic reconfiguration ability of clock managers of Field-Programmable Gate Arrays – FPGAs (such as Xilinx Mixed-Mode Clock Manager – MMCM) which can change the frequency of operation at runtime. We show for the first time how Advanced Encryption Standard (AES) block cipher algorithm can be executed using randomly selected clock frequencies (amongst thousands of frequencies carefully chosen) generated within the FPGA to mitigate power analysis attack vulnerabilities. To test the effectiveness of the proposed clock randomization, Correlation Power analysis (CPA) attacks are performed on the collected power traces. Preprocessing methods, such as Dynamic Time Warping (DTW), Principal Component Analysis (PCA) and Fast Fourier Transform (FFT), based power analysis attacks are performed on the collected traces to test the effective removal of random execution. Compared to the state of the art, where there were 83 distinct finishing times for each encryption, the method described in this paper can have more than 60,000 distinct finishing times for each encryption, making it resistant against power analysis attacks when preprocessed and demonstrated to be secure up to four million traces.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Random execution time-based countermeasures against power analysis attacks have reduced resource overheads when compared to balancing power dissipation and masking counter-measures. The previous countermeasures on randomization use either a small number of clock frequencies or delays to randomize the execution. This paper presents a novel random frequency countermeasure (referred to as RFTC) using the dynamic reconfiguration ability of clock managers of Field-Programmable Gate Arrays – FPGAs (such as Xilinx Mixed-Mode Clock Manager – MMCM) which can change the frequency of operation at runtime. We show for the first time how Advanced Encryption Standard (AES) block cipher algorithm can be executed using randomly selected clock frequencies (amongst thousands of frequencies carefully chosen) generated within the FPGA to mitigate power analysis attack vulnerabilities. To test the effectiveness of the proposed clock randomization, Correlation Power analysis (CPA) attacks are performed on the collected power traces. Preprocessing methods, such as Dynamic Time Warping (DTW), Principal Component Analysis (PCA) and Fast Fourier Transform (FFT), based power analysis attacks are performed on the collected traces to test the effective removal of random execution. Compared to the state of the art, where there were 83 distinct finishing times for each encryption, the method described in this paper can have more than 60,000 distinct finishing times for each encryption, making it resistant against power analysis attacks when preprocessed and demonstrated to be secure up to four million traces.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信