SYSTEMS WITH A HOMOCLINIC CURVE OF MULTIDIMENSIONAL SADDLE-FOCUS TYPE, AND SPIRAL CHAOS

I. Ovsyannikov, L. Shilnikov
{"title":"SYSTEMS WITH A HOMOCLINIC CURVE OF MULTIDIMENSIONAL SADDLE-FOCUS TYPE, AND SPIRAL CHAOS","authors":"I. Ovsyannikov, L. Shilnikov","doi":"10.1070/SM1992V073N02ABEH002553","DOIUrl":null,"url":null,"abstract":"Consider the space of dynamical systems having an isolated equilibrium point of saddle-focus type with a one- or two-dimensional unstable manifold and a trajectory homoclinic at .The following results are proved:Systems with structurally unstable periodic motions are dense in . Systems with a countable set of stable periodic motions are dense in the open subset of comprised of systems whose second saddle parameter is negative. Neither the subset of consisting of systems satisfying 0$ SRC=http://ej.iop.org/images/0025-5734/73/2/A07/tex_sm_2553_img7.gif/> nor any sufficiently small neighborhood of in the space of all dynamical systems contains a system with stable periodic motions in a sufficiently small neighborhood of the contour .","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V073N02ABEH002553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Consider the space of dynamical systems having an isolated equilibrium point of saddle-focus type with a one- or two-dimensional unstable manifold and a trajectory homoclinic at .The following results are proved:Systems with structurally unstable periodic motions are dense in . Systems with a countable set of stable periodic motions are dense in the open subset of comprised of systems whose second saddle parameter is negative. Neither the subset of consisting of systems satisfying 0$ SRC=http://ej.iop.org/images/0025-5734/73/2/A07/tex_sm_2553_img7.gif/> nor any sufficiently small neighborhood of in the space of all dynamical systems contains a system with stable periodic motions in a sufficiently small neighborhood of the contour .
具有多维鞍-焦点型同斜曲线的螺旋混沌系统
考虑具有鞍-焦点型孤立平衡点的动力系统空间,该空间具有一维或二维不稳定流形和轨迹同斜。证明了以下结果:具有结构不稳定周期运动的系统在。具有可数稳定周期运动集的系统在由第二鞍形参数为负的系统组成的开放子集中是密集的。由满足0$ SRC=http://ej.iop.org/images/0025-5734/73/2/A07/tex_sm_2553_img7.gif/>的系统组成的子集和在所有动力系统的空间中任何足够小的邻域都不包含在轮廓的足够小邻域内具有稳定周期运动的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信