Recommendation in Academia: A joint multi-relational model

Zaihan Yang, Dawei Yin, Brian D. Davison
{"title":"Recommendation in Academia: A joint multi-relational model","authors":"Zaihan Yang, Dawei Yin, Brian D. Davison","doi":"10.1109/ASONAM.2014.6921643","DOIUrl":null,"url":null,"abstract":"In this paper, we target at four specific recommendation tasks in the academic environment: the recommendation for author coauthorships, paper citation recommendation for authors, paper citation recommendation for papers, and publishing venue recommendation for author-paper pairs. Different from previous work which tackles each of these tasks separately while neglecting their mutual effect and connection, we propose a joint multi-relational model that can exploit the latent correlation between relations and solve several tasks in a unified way. Moreover, for better ranking purpose, we extend the work maximizing MAP over one single tensor, and make it applicable to maximize MAP over multiple matrices and tensors. Experiments conducted over two real world data sets demonstrate the effectiveness of our model: 1) improved performance can be achieved with joint modeling over multiple relations; 2) our model can outperform three state-of-the art algorithms for several tasks.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we target at four specific recommendation tasks in the academic environment: the recommendation for author coauthorships, paper citation recommendation for authors, paper citation recommendation for papers, and publishing venue recommendation for author-paper pairs. Different from previous work which tackles each of these tasks separately while neglecting their mutual effect and connection, we propose a joint multi-relational model that can exploit the latent correlation between relations and solve several tasks in a unified way. Moreover, for better ranking purpose, we extend the work maximizing MAP over one single tensor, and make it applicable to maximize MAP over multiple matrices and tensors. Experiments conducted over two real world data sets demonstrate the effectiveness of our model: 1) improved performance can be achieved with joint modeling over multiple relations; 2) our model can outperform three state-of-the art algorithms for several tasks.
学术界的建议:联合多关系模型
在本文中,我们针对学术环境中的四个具体推荐任务:作者合作推荐、作者论文引文推荐、论文论文引文推荐和作者-论文对的出版地点推荐。与以往的研究不同,我们提出了一种联合的多关系模型,利用关系之间的潜在相关性,统一解决多个任务。此外,为了更好地排序,我们扩展了在单个张量上最大化MAP的工作,并使其适用于在多个矩阵和张量上最大化MAP。在两个真实数据集上进行的实验证明了该模型的有效性:1)对多个关系进行联合建模可以提高性能;2)我们的模型在一些任务上可以胜过三种最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信