Fuzzy Type-1 Triangular Membership Function Approximation Using Fuzzy C-Means

Muhammad Hamza Azam, M. H. Hasan, Saima Hassan, S. J. Abdulkadir
{"title":"Fuzzy Type-1 Triangular Membership Function Approximation Using Fuzzy C-Means","authors":"Muhammad Hamza Azam, M. H. Hasan, Saima Hassan, S. J. Abdulkadir","doi":"10.1109/ICCI51257.2020.9247773","DOIUrl":null,"url":null,"abstract":"Fuzzy logic is a way of many-valued computing logic that deals with the truth values of the variables between 0 and 1, unlike the conventional Boolean logic. Membership functions are used to depict the fuzzy values of given variable. Though membership functions are determined through expert’s opinion, however, the one estimated through heuristic algorithms is the preferable methods. Membership functions determined through statistical and knowledge engineering methods are usually application dependent and cannot be applied on different datasets. This research focuses on generating the parametric values of the triangular membership function using a novel method. Initially, the Fuzzy C-means algorithm is utilized to generate the parameters values of the Gaussian membership function. Using a set of equations, these values then estimate the parameters of the triangular membership function. The proposed method is applied to the quality of web services data. From the results it is verified that the new approach of generating triangular membership functions can be adopted.","PeriodicalId":194158,"journal":{"name":"2020 International Conference on Computational Intelligence (ICCI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Intelligence (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI51257.2020.9247773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Fuzzy logic is a way of many-valued computing logic that deals with the truth values of the variables between 0 and 1, unlike the conventional Boolean logic. Membership functions are used to depict the fuzzy values of given variable. Though membership functions are determined through expert’s opinion, however, the one estimated through heuristic algorithms is the preferable methods. Membership functions determined through statistical and knowledge engineering methods are usually application dependent and cannot be applied on different datasets. This research focuses on generating the parametric values of the triangular membership function using a novel method. Initially, the Fuzzy C-means algorithm is utilized to generate the parameters values of the Gaussian membership function. Using a set of equations, these values then estimate the parameters of the triangular membership function. The proposed method is applied to the quality of web services data. From the results it is verified that the new approach of generating triangular membership functions can be adopted.
模糊c均值模糊1型三角隶属函数逼近
与传统的布尔逻辑不同,模糊逻辑是一种处理0到1之间变量的真值的多值计算逻辑。利用隶属函数来描述给定变量的模糊值。虽然隶属度函数是通过专家意见确定的,但通过启发式算法估计的隶属度函数是较好的方法。通过统计和知识工程方法确定的隶属度函数通常与应用相关,不能应用于不同的数据集。本文研究了一种新的三角隶属函数参数值生成方法。首先,利用模糊c均值算法生成高斯隶属函数的参数值。使用一组方程,这些值然后估计三角隶属函数的参数。将该方法应用于web服务数据的质量评估。结果表明,三角隶属函数的生成方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信