Extended k-dominant Skyline in High Dimensional Space

Md. Anisuzzaman Siddique, Y. Morimoto
{"title":"Extended k-dominant Skyline in High Dimensional Space","authors":"Md. Anisuzzaman Siddique, Y. Morimoto","doi":"10.1109/ICISA.2010.5480364","DOIUrl":null,"url":null,"abstract":"Skyline queries have recently attracted a lot of attention for its intuitive query formulation. However, it retrieves too many objects, especially for high-dimensional data. To solve this problem, k-dominant skyline queries have been introduced recently, which can reduce the number of retrieved objects by relaxing the definition of dominance. However, sometimes, a k- dominant skyline query retrieves too few objects to analyze. In this paper, we extend the notion of k-domination by defining extended k-dominant skyline, which retrieves neither too many nor too few objects. We then develop a novel algorithm for extended k-dominant skyline computation. Our extensive evaluation results validate the effectiveness and efficiency of the proposed algorithm on both real-life and synthetic datasets.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Skyline queries have recently attracted a lot of attention for its intuitive query formulation. However, it retrieves too many objects, especially for high-dimensional data. To solve this problem, k-dominant skyline queries have been introduced recently, which can reduce the number of retrieved objects by relaxing the definition of dominance. However, sometimes, a k- dominant skyline query retrieves too few objects to analyze. In this paper, we extend the notion of k-domination by defining extended k-dominant skyline, which retrieves neither too many nor too few objects. We then develop a novel algorithm for extended k-dominant skyline computation. Our extensive evaluation results validate the effectiveness and efficiency of the proposed algorithm on both real-life and synthetic datasets.
高维空间中的扩展k-显性天际线
Skyline查询最近因其直观的查询公式而引起了很多关注。但是,它检索的对象太多了,特别是对于高维数据。为了解决这个问题,最近引入了k-dominant skyline查询,它可以通过放松支配的定义来减少检索对象的数量。然而,有时,k- dominant skyline查询检索的对象太少而无法分析。在本文中,我们通过定义扩展的k-显性天际线来扩展k-支配的概念,该天际线检索的对象既不太多也不太少。然后,我们开发了一种扩展k-显性天际线计算的新算法。我们广泛的评估结果验证了所提出算法在现实生活和合成数据集上的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信