Spoken Term Detection Based on Acoustic Models Trained in Multiple Languages for Zero-Resource Language

Satoru Mizuochi, Yuya Chiba, Takashi Nose, A. Ito
{"title":"Spoken Term Detection Based on Acoustic Models Trained in Multiple Languages for Zero-Resource Language","authors":"Satoru Mizuochi, Yuya Chiba, Takashi Nose, A. Ito","doi":"10.1109/GCCE50665.2020.9291761","DOIUrl":null,"url":null,"abstract":"In this paper, we study a spoken term detection method for zero-resource languages by using rich-resource languages. The examined method combines phonemic posteriorgrams (PPGs) extracted from phonemic classifiers of multiple languages and detects a query word based on dynamic time warping. As a result, the method showed better detection performance in a zero-resource language compared with the method using PPGs of a single language.","PeriodicalId":179456,"journal":{"name":"2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE50665.2020.9291761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a spoken term detection method for zero-resource languages by using rich-resource languages. The examined method combines phonemic posteriorgrams (PPGs) extracted from phonemic classifiers of multiple languages and detects a query word based on dynamic time warping. As a result, the method showed better detection performance in a zero-resource language compared with the method using PPGs of a single language.
基于多语言训练声学模型的零资源语言口语词检测
本文研究了一种基于富资源语言的零资源语言口语术语检测方法。该方法结合从多种语言的音位分类器中提取的音位后图(PPGs),并基于动态时间翘曲检测查询词。结果表明,该方法在零资源语言下的检测性能优于使用单一语言的ppg检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信