Gene Expression Analysis based on Ant Colony Optimisation Classification

G. Schaefer
{"title":"Gene Expression Analysis based on Ant Colony Optimisation Classification","authors":"G. Schaefer","doi":"10.4018/IJRSDA.2016070104","DOIUrl":null,"url":null,"abstract":"Microarray studies and gene expression analysis have received significant attention over the last few years and provide many promising avenues towards the understanding of fundamental questions in biology and medicine. In this paper, the authors investigate the application of ant colony optimisation ACO based classification for the analysis of gene expression data. They employ cAnt-Miner, a variation of the classical Ant-Miner classifier, which is capable of interpreting the numerical gene expression data. Experimental results on well-known gene expression datasets show that the ant-based approach is capable of extracting a compact rule base while providing good classification performance.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2016070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Microarray studies and gene expression analysis have received significant attention over the last few years and provide many promising avenues towards the understanding of fundamental questions in biology and medicine. In this paper, the authors investigate the application of ant colony optimisation ACO based classification for the analysis of gene expression data. They employ cAnt-Miner, a variation of the classical Ant-Miner classifier, which is capable of interpreting the numerical gene expression data. Experimental results on well-known gene expression datasets show that the ant-based approach is capable of extracting a compact rule base while providing good classification performance.
基于蚁群优化分类的基因表达分析
微阵列研究和基因表达分析在过去几年中受到了极大的关注,并为理解生物学和医学的基本问题提供了许多有前途的途径。在本文中,作者研究了基于蚁群优化的ACO分类在基因表达数据分析中的应用。他们使用了Ant-Miner,这是经典Ant-Miner分类器的一种变体,能够解释数字基因表达数据。在已知基因表达数据集上的实验结果表明,基于蚁群的方法能够提取出紧凑的规则库,并提供良好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信