Malik Tahir Hassan, Asim Karim, F. Javed, N. Arshad
{"title":"Self-Optimizing a Clustering-based Tag Recommender for Social Bookmarking Systems","authors":"Malik Tahir Hassan, Asim Karim, F. Javed, N. Arshad","doi":"10.1109/ICMLA.2010.93","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and evaluate a self-optimization strategy for a clustering-based tag recommendation system. For tag recommendation, we use an efficient discriminative clustering approach. To develop our self-optimization strategy for this tag recommendation approach, we empirically investigate when and how to update the tag recommender with minimum human intervention. We present a nonlinear optimization model whose solution yields the clustering parameters that maximize the recommendation accuracy within an administrator specified time window. Evaluation on ``BibSonomy'' data produces promising results. For example, by using our self-optimization strategy a 6\\% increase in average F1 score is achieved when the administrator allows \\emph{up to} 2\\% drop in average F1 score in the last one thousand recommendations.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we propose and evaluate a self-optimization strategy for a clustering-based tag recommendation system. For tag recommendation, we use an efficient discriminative clustering approach. To develop our self-optimization strategy for this tag recommendation approach, we empirically investigate when and how to update the tag recommender with minimum human intervention. We present a nonlinear optimization model whose solution yields the clustering parameters that maximize the recommendation accuracy within an administrator specified time window. Evaluation on ``BibSonomy'' data produces promising results. For example, by using our self-optimization strategy a 6\% increase in average F1 score is achieved when the administrator allows \emph{up to} 2\% drop in average F1 score in the last one thousand recommendations.