PRI analysis from sparse data via a modified Euclidean algorithm

B. Sadler, S. Casey
{"title":"PRI analysis from sparse data via a modified Euclidean algorithm","authors":"B. Sadler, S. Casey","doi":"10.1109/ACSSC.1995.540879","DOIUrl":null,"url":null,"abstract":"Analysis of periodic pulse trains based on time of arrival is considered, with perhaps very many missing observations and contaminated data. A period estimator is developed based on a modified Euclidean algorithm. This algorithm is a computationally simple, robust method for estimating the greatest common divisor of a noisy contaminated data set. The resulting estimate, while not maximum likelihood, is used as initialisation in a three-step algorithm that achieves the Cramer-Rao bound for moderate noise levels, as shown by comparing Monte Carlo results with the Cramer-Rao bounds.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Analysis of periodic pulse trains based on time of arrival is considered, with perhaps very many missing observations and contaminated data. A period estimator is developed based on a modified Euclidean algorithm. This algorithm is a computationally simple, robust method for estimating the greatest common divisor of a noisy contaminated data set. The resulting estimate, while not maximum likelihood, is used as initialisation in a three-step algorithm that achieves the Cramer-Rao bound for moderate noise levels, as shown by comparing Monte Carlo results with the Cramer-Rao bounds.
通过改进的欧几里得算法对稀疏数据进行PRI分析
考虑了基于到达时间的周期脉冲序列分析,可能有很多缺失的观测和污染的数据。提出了一种基于改进欧几里得算法的周期估计器。该算法是一种计算简单、鲁棒的估计噪声污染数据集的最大公因数的方法。结果估计,虽然不是最大似然,被用作初始化在三步算法中,实现中等噪声水平的Cramer-Rao界,如比较蒙特卡罗结果与Cramer-Rao界所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信