Local minimum redundancy representation of a system for estimating the number of its degrees of freedom

O. Michel, P. Flandrin
{"title":"Local minimum redundancy representation of a system for estimating the number of its degrees of freedom","authors":"O. Michel, P. Flandrin","doi":"10.1109/HOST.1993.264539","DOIUrl":null,"url":null,"abstract":"Fractional dimension estimation is an important tool for characterizing chaotic systems. However it has been shown that a fractional dimension estimate may lead to a misinterpretation of the nature of a system. The authors present some new results on the local intrinsic dimension (LID) approach, based on a local linear minimum redundancy representation of the system, and using higher order statistics (HOS). They recall the formulation of the LID approach, and put forward a new justification of the method for autonomous by ordinary differential equations (ODE) driven systems. They present some qualitative analysis of the LID method, and justify the need of introducing HOS for discriminating stochastic from deterministic processes, via the definition of the number of degrees of freedom (DOF) involved in the system. These ideas are illustrated and discussed through examples.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Fractional dimension estimation is an important tool for characterizing chaotic systems. However it has been shown that a fractional dimension estimate may lead to a misinterpretation of the nature of a system. The authors present some new results on the local intrinsic dimension (LID) approach, based on a local linear minimum redundancy representation of the system, and using higher order statistics (HOS). They recall the formulation of the LID approach, and put forward a new justification of the method for autonomous by ordinary differential equations (ODE) driven systems. They present some qualitative analysis of the LID method, and justify the need of introducing HOS for discriminating stochastic from deterministic processes, via the definition of the number of degrees of freedom (DOF) involved in the system. These ideas are illustrated and discussed through examples.<>
系统的局部最小冗余表示,用于估计其自由度的数目
分数维估计是表征混沌系统的重要工具。然而,已经表明,分数维估计可能导致对系统性质的误解。基于系统的局部线性最小冗余表示,利用高阶统计量,给出了局部固有维数(LID)方法的一些新结果。他们回顾了LID方法的公式,并对常微分方程(ODE)驱动系统的自治方法提出了新的证明。他们对LID方法进行了定性分析,并通过对系统中涉及的自由度(DOF)的定义,证明了引入HOS来区分随机过程和确定性过程的必要性。这些观点通过实例加以说明和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信