Development of low-cost embedded-based electrooculogram blink pulse classifier for drowsiness detection system

K. M. Tabal, J. D. dela Cruz
{"title":"Development of low-cost embedded-based electrooculogram blink pulse classifier for drowsiness detection system","authors":"K. M. Tabal, J. D. dela Cruz","doi":"10.1109/CSPA.2017.8064919","DOIUrl":null,"url":null,"abstract":"This paper discusses the development of a low-cost embedded-based electrooculogram (EOG) blink pulse classifier. A signal conditioning circuit from a single quad operational amplifier (Op-Amp) and an Arduino based on the ATmega32u4 AVR 8-bit microcontroller board comprised the major components of the embedded-based classifier. The evaluation of the nearest neighbor algorithm classifier resulted to an accuracy of 87.14%, precision of 93.33% and sensitivity of 80.00%. Further, based on the participants who evaluated the drowsiness detection system the results were 3.38 and 4.13 with verbal interpretations of comfortable and very convenient respectively.","PeriodicalId":445522,"journal":{"name":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2017.8064919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper discusses the development of a low-cost embedded-based electrooculogram (EOG) blink pulse classifier. A signal conditioning circuit from a single quad operational amplifier (Op-Amp) and an Arduino based on the ATmega32u4 AVR 8-bit microcontroller board comprised the major components of the embedded-based classifier. The evaluation of the nearest neighbor algorithm classifier resulted to an accuracy of 87.14%, precision of 93.33% and sensitivity of 80.00%. Further, based on the participants who evaluated the drowsiness detection system the results were 3.38 and 4.13 with verbal interpretations of comfortable and very convenient respectively.
用于睡意检测系统的低成本嵌入式眼电眨眼脉冲分类器的研制
本文讨论了一种低成本嵌入式眼电脉冲分类器的研制。基于ATmega32u4 AVR 8位微控制器板的单四运放(Op-Amp)信号调理电路和Arduino组成了基于嵌入式分类器的主要组件。结果表明,最近邻分类器的准确率为87.14%,精密度为93.33%,灵敏度为80.00%。此外,根据评估困倦检测系统的参与者,结果分别为3.38和4.13,口头解释为舒适和非常方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信