Performance Prediction of NUMA Placement: A Machine-Learning Approach

Fanourios Arapidis, Vasileios Karakostas, Nikela Papadopoulou, K. Nikas, G. Goumas, N. Koziris
{"title":"Performance Prediction of NUMA Placement: A Machine-Learning Approach","authors":"Fanourios Arapidis, Vasileios Karakostas, Nikela Papadopoulou, K. Nikas, G. Goumas, N. Koziris","doi":"10.1109/CloudCom2018.2018.00064","DOIUrl":null,"url":null,"abstract":"In this paper we present a machine-learning approach to predict the impact on performance of core and memory placement in non-uniform memory access (NUMA) systems. The impact on performance depends on the architecture and the application's characteristics. We focus our study on features that can be easily extracted with hardware performance counters that are found in commodity off-the-self systems. We run various single-threaded benchmarks from Spec2006 and Parsec under different placement scenarios, and we use this benchmarking data to train multiple regression models that could serve as performance predictors. Our experimental results show notable accuracy in predicting the impact on performance with relatively simple prediction models.","PeriodicalId":365939,"journal":{"name":"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom2018.2018.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a machine-learning approach to predict the impact on performance of core and memory placement in non-uniform memory access (NUMA) systems. The impact on performance depends on the architecture and the application's characteristics. We focus our study on features that can be easily extracted with hardware performance counters that are found in commodity off-the-self systems. We run various single-threaded benchmarks from Spec2006 and Parsec under different placement scenarios, and we use this benchmarking data to train multiple regression models that could serve as performance predictors. Our experimental results show notable accuracy in predicting the impact on performance with relatively simple prediction models.
NUMA放置的性能预测:一种机器学习方法
在本文中,我们提出了一种机器学习方法来预测非均匀内存访问(NUMA)系统中内核和内存放置对性能的影响。对性能的影响取决于体系结构和应用程序的特征。我们的研究重点是那些可以很容易地从商用off- self系统中找到的硬件性能计数器中提取出来的特征。我们在不同的放置场景下运行Spec2006和Parsec的各种单线程基准测试,我们使用这些基准测试数据来训练多个回归模型,这些模型可以作为性能预测器。我们的实验结果表明,使用相对简单的预测模型预测对性能的影响具有显著的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信