FPSS: Fingerprint-based semantic similarity detection in big data environment

M. Elhoseny, M. Zaher, A. Shehab, A. Hassanien
{"title":"FPSS: Fingerprint-based semantic similarity detection in big data environment","authors":"M. Elhoseny, M. Zaher, A. Shehab, A. Hassanien","doi":"10.1109/INTELCIS.2017.8260066","DOIUrl":null,"url":null,"abstract":"Although the problem of plagiarism is an ancient problem that exists before the start of internet revolution, the accessibility of free and easy accessed electronic paper on the Internet complicated and increased the problem. However, there are many systems for detecting plagiarism in natural language documents. Contrary to Latin documents, the same Arabic letter can be written into three various ways based on its position in the word. The complex nature of writing Arabic documents makes such system is a big challenge. Accordingly, this paper presents a Fingerprint-Based Semantic Similarity detection system, called (FPSS) to detect plagiarism in Arabic documents. It generates a digital fingerprint (df) for each sentence and compares all the df values. Moreover, it analyzes corresponding detection schemes to detect Semantic Similarity effectively. FPSS improves the effectiveness regarding the matched similarity ratio, the precision ratio, the recall ratio, the F-measure ratio, the plagdet ratio, and the granularity ratio.","PeriodicalId":321315,"journal":{"name":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2017.8260066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Although the problem of plagiarism is an ancient problem that exists before the start of internet revolution, the accessibility of free and easy accessed electronic paper on the Internet complicated and increased the problem. However, there are many systems for detecting plagiarism in natural language documents. Contrary to Latin documents, the same Arabic letter can be written into three various ways based on its position in the word. The complex nature of writing Arabic documents makes such system is a big challenge. Accordingly, this paper presents a Fingerprint-Based Semantic Similarity detection system, called (FPSS) to detect plagiarism in Arabic documents. It generates a digital fingerprint (df) for each sentence and compares all the df values. Moreover, it analyzes corresponding detection schemes to detect Semantic Similarity effectively. FPSS improves the effectiveness regarding the matched similarity ratio, the precision ratio, the recall ratio, the F-measure ratio, the plagdet ratio, and the granularity ratio.
大数据环境下基于指纹的语义相似度检测
虽然抄袭问题是在互联网革命开始之前就存在的一个古老问题,但互联网上免费和易于获取的电子论文的可访问性使问题复杂化并增加了问题。然而,有许多系统可以检测自然语言文档中的抄袭。与拉丁文献相反,同一个阿拉伯字母可以根据其在单词中的位置有三种不同的写法。阿拉伯文文件书写的复杂性使得这样的系统是一个很大的挑战。为此,本文提出了一种基于指纹的语义相似度检测系统(FPSS)来检测阿拉伯语文献中的抄袭行为。它为每个句子生成一个数字指纹(df),并比较所有的df值。分析了相应的检测方案,有效地检测了语义相似度。FPSS在匹配相似比、精确比、召回比、F-measure比、plagdet比和粒度比等方面提高了有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信