The Discrete Elementary Groups

Zhou Qing
{"title":"The Discrete Elementary Groups","authors":"Zhou Qing","doi":"10.1360/YA1993-36-9-1047","DOIUrl":null,"url":null,"abstract":"This paper discusses discrete elementary subgroups in the Mobius group M( R n ).With a help of geometry,it is proved that these groups are isomorphic to either a group extension of Z by a finite subgroup of SO ( n ) or an extension of a finite group by a free Abelian group of rank k ≤ n .","PeriodicalId":256661,"journal":{"name":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/YA1993-36-9-1047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses discrete elementary subgroups in the Mobius group M( R n ).With a help of geometry,it is proved that these groups are isomorphic to either a group extension of Z by a finite subgroup of SO ( n ) or an extension of a finite group by a free Abelian group of rank k ≤ n .
离散初等群
讨论了Mobius群M(R n)中的离散初等子群。借助于几何证明了这些群同构于Z被SO (n)的有限子群扩展或有限群被秩k≤n的自由阿贝尔群扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信