How to play ANY mental game

Oded Goldreich, S. Micali, A. Wigderson
{"title":"How to play ANY mental game","authors":"Oded Goldreich, S. Micali, A. Wigderson","doi":"10.1145/28395.28420","DOIUrl":null,"url":null,"abstract":"We present a polynomial-time algorithm that, given as a input the description of a game with incomplete information and any number of players, produces a protocol for playing the game that leaks no partial information, provided the majority of the players is honest. Our algorithm automatically solves all the multi-party protocol problems addressed in complexity-based cryptography during the last 10 years. It actually is a completeness theorem for the class of distributed protocols with honest majority. Such completeness theorem is optimal in the sense that, if the majority of the players is not honest, some protocol problems have no efficient solution [C].","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4497","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4497

Abstract

We present a polynomial-time algorithm that, given as a input the description of a game with incomplete information and any number of players, produces a protocol for playing the game that leaks no partial information, provided the majority of the players is honest. Our algorithm automatically solves all the multi-party protocol problems addressed in complexity-based cryptography during the last 10 years. It actually is a completeness theorem for the class of distributed protocols with honest majority. Such completeness theorem is optimal in the sense that, if the majority of the players is not honest, some protocol problems have no efficient solution [C].
如何玩任何心理游戏
我们提出了一个多项式时间算法,该算法以不完全信息和任意玩家数量的游戏描述为输入,在大多数玩家诚实的情况下,生成一个不泄露部分信息的游戏协议。我们的算法自动解决了过去10年来基于复杂性的密码学中所解决的所有多方协议问题。它实际上是具有诚实多数的分布式协议类的完备性定理。这种完备性定理在某种意义上是最优的,即如果大多数参与者不诚实,某些协议问题没有有效的解决方案[C]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信