Deep Reinforcement Learning Framework for Short-Term Voltage Stability Improvement

Muhammad Sarwar, A. Matavalam, V. Ajjarapu
{"title":"Deep Reinforcement Learning Framework for Short-Term Voltage Stability Improvement","authors":"Muhammad Sarwar, A. Matavalam, V. Ajjarapu","doi":"10.1109/TPEC56611.2023.10078572","DOIUrl":null,"url":null,"abstract":"This paper investigates the mitigation of fault-induced delayed voltage recovery (FIDVR) using dynamic voltage support from hybrid PV plants and optimal load control using deep reinforcement learning (DRL). We characterize and quantify the delayed voltage recovery phenomenon through probability density-based metrics. We propose a DRL-based load control by optimally tripping stalled induction motor loads to recover the voltage quickly. The amount of load tripping depends on system operating conditions, so the data-driven framework gives optimal load control adaptable to the system conditions. The numerical simulations show that the dynamic reactive power injection and DRL-based load control improve the voltage recovery and decrease the amount of load tripped significantly.","PeriodicalId":183284,"journal":{"name":"2023 IEEE Texas Power and Energy Conference (TPEC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC56611.2023.10078572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the mitigation of fault-induced delayed voltage recovery (FIDVR) using dynamic voltage support from hybrid PV plants and optimal load control using deep reinforcement learning (DRL). We characterize and quantify the delayed voltage recovery phenomenon through probability density-based metrics. We propose a DRL-based load control by optimally tripping stalled induction motor loads to recover the voltage quickly. The amount of load tripping depends on system operating conditions, so the data-driven framework gives optimal load control adaptable to the system conditions. The numerical simulations show that the dynamic reactive power injection and DRL-based load control improve the voltage recovery and decrease the amount of load tripped significantly.
短期电压稳定性改进的深度强化学习框架
本文研究了使用混合光伏电站动态电压支持和使用深度强化学习(DRL)的最优负载控制来缓解故障诱导的延迟电压恢复(FIDVR)。我们通过基于概率密度的度量来表征和量化延迟电压恢复现象。我们提出了一种基于drl的负载控制方法,通过最佳脱扣失速感应电机负载来快速恢复电压。负载跳闸的数量取决于系统的运行条件,因此数据驱动的框架给出了适应系统条件的最优负载控制。数值模拟结果表明,动态无功注入和基于drl的负载控制显著提高了电压恢复,减少了负载跳闸量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信